ECE606: Solid State Devices
Lecture 34: MOSCAP Frequency Response

Muhammad Ashraful Alam
alam@purdue.edu
Outline

1. Background

2. Small signal capacitances

3. Large signal capacitance

4. Conclusion

Ref: Sec. 16.4 of SDF
Topic Map

<table>
<thead>
<tr>
<th></th>
<th>Equilibrium</th>
<th>DC</th>
<th>Small signal</th>
<th>Large Signal</th>
<th>Circuits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schottky</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BJT/HBT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOSCAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Small Signal Equivalent Circuit

For insulated devices, consider only majority carrier junction capacitance C_J

Low frequency

High frequency

C_J/C_0

V_G

G0

C_D

C_J
Junction Capacitance

\[V_G + \nu_s \sin \omega t \]

\[C_G \equiv \frac{dQ_G}{dV_G} = \frac{d(-Q_s)}{dV_G} \]

\[V_G = \psi_s - \frac{Q_s}{C_o} \]

\[\frac{dV_G}{d(-Q_s)} = \frac{d\psi_s}{d(-Q_s)} + \frac{1}{C_o} \]

\[\frac{1}{C_G} = \frac{1}{C_S} + \frac{1}{C_O} \]
Junction Capacitance

\[\frac{1}{C_G} = \frac{1}{C_S} + \frac{1}{C_O} \]

\[C_S \equiv \frac{d(-Q_S)}{d\psi_S} \]

\[Q_S(\psi_S) \]

which we already understand!
Definition of m for later use

$m = (1 + C_S / C_O)$

‘body effect coefficient’

$m = (1 + \kappa_S x_O / \kappa_0 W_T)$

in practice:

$1.1 \leq m \leq 1.4$

\[\psi_s = \frac{C_O}{C_O + C_S} V_G \equiv \frac{V_G}{m} \]
Outline

1. Background

2. Small signal capacitances

3. Large signal capacitance

4. Conclusion
Junction Capacitance *in accumulation*

\[C_{j,acc} \approx \frac{K_{ox} \varepsilon_0}{x_0} \equiv C_0 \]

\[C_{j,acc} = \frac{C_0 C_{s,acc}}{C_0 + C_{s,acc}} \]

\[C_{s,acc} = \frac{\kappa_s \varepsilon_0}{W_{acc}} \]

Low frequency \(\frac{C}{C_0} \)
Junction Capacitance \textit{in depletion}

\[C_{j,\text{dep}} = \frac{C_0 C_s}{C_0 + C_s} = \frac{C_0}{1 + C_0/C_s} \]

\[= \frac{C_0}{1 + \frac{\kappa_o \varepsilon_0}{x_0} / \sqrt{\frac{\kappa_s \varepsilon_0}{W}}} = \frac{C_0}{\sqrt{1 + \frac{V_G}{V_\delta}}} \]

\[V_G = \frac{q N_A W}{\kappa_o \varepsilon_0} x_0 + \left(\frac{q N_A W^2}{2 \kappa_s \varepsilon_0}\right) \]

\[\frac{\kappa_o W}{\kappa_s x_0} = \sqrt{1 + \frac{V_G}{V_\delta}} - 1 \]

\[\frac{C}{C_0} \]

\[V_G \]
Junction capacitance *in inversion*

\[C_{j,\text{inv}} \approx \frac{\kappa_s \varepsilon_0}{x_0} \equiv C_0 \]

\[C_{j,\text{inv}} = \frac{C_o C_{\text{inv}}}{C_o + C_{\text{inv}}} \quad C_{\text{inv}} \equiv \frac{\kappa_s \varepsilon_0}{W_{\text{inv}}} \]

\[\frac{C}{C_o} \]

Low frequency

\[V_G' > V_{T'} \]

Exposed Acceptors

Electrons

\[+Q \]

\[-Q \]

\[V_G \]
Equivalent Oxide Thickness

\[Q_i = -C_G \left(V_G - V_T \right) \]

\[C_G = C_{j,\text{inv}} = \frac{C_o C_{\text{inv}}}{C_{\text{inv}} + C_o} < C_o \]

\[C_o = \frac{\kappa_o \varepsilon_o}{x_0} \quad C_{\text{inv}} \equiv \frac{\kappa_s \varepsilon_o}{W_{\text{inv}}} \]

\[C_G = \frac{\kappa_{ox} \varepsilon_o}{EOT_{\text{elec}}} \]

\[EOT_{\text{elec}} = x_O + \left(\frac{\kappa_{ox} \varepsilon_o}{\kappa_s \varepsilon_o} \right) W_{\text{inv}} > x_O \]

‘Equivalent oxide thickness - electrical’
High frequency curve at inversion

$$C_{j,\text{inv}} \approx \frac{K_s \epsilon_0}{x_0} \equiv C_0$$

What about high frequency part of the curve?
Response Time

Dielectric Relaxation

\[\tau = \frac{\sigma}{K_s \varepsilon_0} \]

SRH Recombination-Generation

\[R = \frac{np - n_i^2}{\tau_n (p + p_1) + \tau_p (n + n_1)} \rightarrow \frac{-n_i}{\tau_n + \tau_p} \]

Ref. Lecture no. 15
High frequency response in MOS-C

Low Frequency

High Frequency

\(\Delta Q \)

\(W_T \)

\(-\Delta Q\)

\(C/C_0 \)

Low frequency

High frequency

\(V_G \)
Ideal vs. Real C-V Characteristics

Flat band voltage ...

Threshold voltage ...

C/C_0
Outline

1. Background

2. Small signal capacitances

3. Large signal capacitance

4. Conclusion
<table>
<thead>
<tr>
<th></th>
<th>Equilibrium</th>
<th>DC</th>
<th>Small signal</th>
<th>Large Signal</th>
<th>Circuits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schottky</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BJT/HBT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOS</td>
<td></td>
<td></td>
<td></td>
<td>Large Signal</td>
<td></td>
</tr>
</tbody>
</table>
Large Signal Deep Depletion

\[C_{j,\text{dep}} = \frac{C_0 C_s}{C_0 + C_s} = \frac{C_0}{1 + \frac{\kappa_{ox} W}{\kappa_s x_0}} \]

\[= \frac{C_0}{\sqrt{1 + \frac{V_G}{V_\delta}}} \]

(even beyond threshold)
Relaxation from Deep Depletion

Depending on the measurement frequency, it will either merge with low-freq. or high-freq. curve.

\[C/C_{ox} \]

Low frequency

High frequency

Deep depletion

\[\Delta Q \]

\[\rho(x) \]

\[W_{dm} \]

\[N_A \]

\[x_0 \]
Ideal vs. Real C-V Characteristics

Flat band voltage ...

Threshold voltage ...

\[
\frac{C}{C_0} \quad V_G
\]
Low or High frequency?

Typically observe high-frequency CV

\[G = \frac{n_i}{2\tau} \]

Typically observe low-frequency CV
No deep-depletion as well

What happens if I shine light on a MOS capacitor?
Summary

1) Since current flow through the oxide is small, we are primarily interested in the junction capacitance of the MOS-capacitor.

2) High frequency of MOS-C is very different than low-frequency C-V. In MOSFET, we only see low frequency response.

3) Deep depletion is an important consideration for MOS-capacitor that does not happen in MOSFETs.