SPRING 2016 ECE 659 EXAM I

Friday, Jan.29, 2016, FNY B124, 230-320PM

NAME : ___

CLOSED BOOK

1 page of notes provided

All five questions carry equal weight
1.1. Describe how you obtain the relation

\[I = \frac{q}{h} M \left(\mu^+ - \mu^- \right) \quad (A) \]

starting from the general expression

\[I = \frac{q}{h} \int_{-\infty}^{+\infty} dE \tilde{M}(E) \left(f^+(E) - f^-(E) \right) \quad (B) \]

and obtain an expression for M. Please state your assumptions clearly.

Solution:

Assume

\[f^\pm(E) = \frac{1}{1 + \exp \left(\frac{E - \mu^\pm}{kT} \right)} \]

\[\bar{\mu} = \frac{1}{2} \left(\mu^+ + \mu^- \right) \]

and \(\mu^+ - \mu^- \ll kT \).

\[f^+(E) - f^-(E) \approx \left(\frac{\partial f}{\partial \mu} \right)_{\mu = \bar{\mu}} (\mu^+ - \mu^-) = \left(-\frac{\partial f}{\partial E} \right) (\mu^+ - \mu^-) \]

Substituting into (B) we obtain

\[I = \frac{q}{h} \int_{-\infty}^{+\infty} dE \tilde{M}(E) \left(-\frac{\partial f}{\partial E} \right) (\mu^+ - \mu^-) \]

\[= M \]

which leads to (A) with M defined as shown.
1.2. For a 3D conductor (area: A, Length: L) with an energy-momentum relation

\[E^2 = E_g^2 + v_0^2 p^2 \]

(a) Find the functions \(M(E) \), \(D(E) \) for positive \(E \) (\(E > 0 \)).

(b) Show that the following relation is satisfied:

\[D(E)v(E)p(E) = N(E)d \]

Solution:

(a)

\[
N(E) = \frac{4\pi}{3} AL \left(\frac{p}{h} \right)^3 = \frac{4\pi}{3h^3} AL \left(\frac{E^2 - E_g^2}{v_0^2} \right)^{3/2} = \frac{4\pi}{3h^3v_0^3} AL \left(E^2 - E_g^2 \right)^{3/2}
\]

\[
D(E) = \frac{dN(E)}{dE} = \frac{4\pi}{h^3v_0^3} AL \left(E^2 - E_g^2 \right)^{1/2} E
\]

\[
M(E) = \pi A \left(\frac{p}{h} \right)^2 = \frac{\pi A}{h^2} \left(\frac{E^2 - E_g^2}{v_0^2} \right)
\]

(b) From (a),

\[
\frac{N(E)}{D(E)} = \frac{E^2 - E_g^2}{3E}
\]

Also,

\[
v(E)p(E) = \frac{dE}{dp} p = \frac{2v_0^2 p^2}{2E} = \frac{E^2 - E_g^2}{E}
\]

Hence,

\[D(E)v(E)p(E) = N(E)d \]

The relation is satisfied.
1.3. Consider an otherwise ballistic channel with M modes having a scatterer in the middle where only a fraction T of all the electrons proceed along the original direction, while the rest $(1-T)$ get turned around.

(a) Determine the values of μ^+ and μ^- on either side of the scatterer in terms of μ_1, μ_2 and T and (b) explain why the resistance associated with the voltage drop across the scatterer is given by $R_{\text{scatterer}} = \frac{\hbar}{q^2M} \frac{1-T}{T}$ while the total resistance is given by $R_{\text{total}} = \frac{\hbar}{q^2MT}$.

Solution:

(a) Since $I^{\pm} = (qM / \hbar) \mu^{\pm}$ we can write

$\mu_2^+ = T \mu_1^+ + (1-T) \mu_2^-$

$\mu_1^- = (1-T) \mu_1^+ + T \mu_2^-$

Assume $\mu_1^+ = \mu_1$ and $\mu_2^- = \mu_2$:

$\mu_2^+ = \mu_2 + T(\mu_1 - \mu_2)$

$\mu_1^- = \mu_1 - T(\mu_1 - \mu_2)$

(b) $I = I^+ - I^- = (qM / \hbar)(\mu_2^+ - \mu_2^-) = (qM / \hbar)(\mu_1^+ - \mu_1^-)$

$= (qMT / \hbar)(\mu_1 - \mu_2)$ \hspace{1cm} \text{Same answer on Left or Right}$R_{\text{total}} \equiv \frac{\mu_1 - \mu_2}{qI} = \frac{\hbar}{q^2MT}$

(c) $R_{\text{scatterer}} = \frac{1}{2} \frac{(\mu_1^+ + \mu_1^+ - (\mu_2^+ + \mu^-_2)}{qI} = \frac{\hbar}{q^2MT} \frac{1-T}{T}$
1.4. (a) A three terminal conductor is described by

\[I_m = \frac{1}{q} \sum_n G_{mn} (\mu_m - \mu_n) \]

where \(G = \frac{q^2}{h} \begin{bmatrix} 10 & 6 & 4 \\ 4 & 10 & 6 \\ 6 & 4 & 10 \end{bmatrix} \)

Is this consistent with the requirement of current conservation? Explain

Solution: Current conservation (or Kirchoff’s law) requires

\[0 = \sum_m I_m = \frac{1}{q} \sum_{m,n} G_{mn} (\mu_m - \mu_n) = \frac{1}{q} \sum_{m,n} (G_{mn} - G_{nm}) \mu_m \]

Since this must be true regardless of the values of \(\mu_m \)

\[\sum_n (G_{mn} - G_{nm}) = 0 \rightarrow \sum_n G_{mn} = \sum_n G_{nm} \]

The given G-matrix satisfies this requirement and hence is consistent with current conservation.

(b) A two terminal conductor is described by

\[I_m = \frac{1}{q} \sum_n G_{mn} (\mu_m - \mu_n) \]

where \(G = \frac{q^2}{h} \begin{bmatrix} 10 & 6 \\ 4 & 10 \end{bmatrix} \)

Is this consistent with current conservation?

Solution: This G-matrix does not satisfy the above requirement and hence is not consistent with current conservation.
1.5. Evaluate the left hand side of the steady-state Boltzmann equation

\[\nu_z \frac{\partial f_0}{\partial z} + F_z \frac{\partial f_0}{\partial p_z} \]

where \(f_0 \) is the equilibrium Fermi function with \(E = \epsilon(p_z) + U(z) \).

\[f_0(E) \equiv \frac{1}{1 + \exp\left(\frac{E - \mu_0}{kT} \right)} \]

Note: \(\nu_z \equiv \frac{d\epsilon}{dp_z}, \ F_z \equiv -\frac{dU}{dz} \)

Solution:

\[\nu_z \frac{\partial f_0}{\partial z} + F_z \frac{\partial f_0}{\partial p_z} = \frac{\partial f_0}{\partial E} \left(\nu_z \frac{\partial E}{\partial z} + F_z \frac{\partial E}{\partial p_z} \right) = \frac{\partial f_0}{\partial E} \left(\nu_z \frac{dU}{dz} + F_z \frac{d\epsilon}{dp_z} \right) = 0 \]

since \(\nu_z = \frac{d\epsilon}{dp_z}, \ F_z = -\frac{dU}{dz} \)