Module 2: HW/SW Partitioning
Lecture 2.14: Application Specific Instruction Processors (ASIPs)
• Application-specific Instruction Processors (ASIPs)
 – ASIPs as a building block for SoCs
 – ASIP design approaches
 – Extensible Processors: A practical approach to ASIP design
HW/SW Partitioning: Two Approaches

- Fundamental differences arise from
 - Whether the ISA changes
 - How the custom HW is integrated with the programmable HW

![Diagram showing HW/SW Partitioning]

- **ISA**
- **GPP**
- **HW Accel.**
- **Software**
- **Memory-mapped I/O + interrupts**
- **ASIP**
- **Custom HW**
- **Extensions to ISA**
Architectural Alternatives

• Important questions:
 – Is there a (Turing-complete) instruction set?
 – Is the instruction set tailored to an application or domain?

• Application-specific Hardware: No “instruction set”

• GPP: Instruction Set is not tailored towards a specific application or application domain

• DoSP: Instruction Set is tailored to a domain
 – Graphics, Digital Signal Processing, Network Processing

• ASIP: Instruction Set customized to a specific application
A functional view of an SoC: Control Plane and Data Plane Processing

Source: Grant Martin, Tensilica
Control and Data Plane Processing Tasks

<table>
<thead>
<tr>
<th>Application</th>
<th>Control Plane Processing Tasks</th>
<th>Dataplane Processing Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Forwarding</td>
<td>Policy Application
Network Management
Signaling
Topology Management</td>
<td>Queuing
Scheduling
Routing
Classification
Encryption/Decryption</td>
</tr>
<tr>
<td>Advanced Set-Top Box (ASTB)</td>
<td>Configuration Management
User Interface</td>
<td>Audio Decoding
Video Decoding
2D and 3D Graphics</td>
</tr>
<tr>
<td>MID</td>
<td>User Interface
Database Management
Office Applications</td>
<td>Audio Codecs
Video Codecs
Wireless PHY and Link Layers</td>
</tr>
</tbody>
</table>

Source: Grant Martin, Tensilica
SoC Based on HW Accelerators - TI OMAP 44XX
Moving the DPU from Custom HW to an ASIP

Custom HW based Design

ASIP-based Design

Q: What is the benefit of doing this?

Source: Grant Martin, Tensilica
ASIP as a building block for SoCs (Example 1: 6 ASIPs + 1 GPP)

- Epson Realoid Printer SoCs
- Heterogeneous, asymmetric, 7 core design with very little app. specific HW
- 90nm process technology, 288 MHz clock rate, >7M gate-count complexity, Less than 2.5W power

Epson PM-T990 Epson PM-A970 Epson PM-D870 Epson PM-A920 Epson Stylus Photo R380

Source: Grant Martin, Tensilica
What are all those ASIPs for?

Each processing block runs at whatever clock rate is needed for that block, which saves energy.

Source: Grant Martin, Tensilica
ASIP as a building block for MPSOCs
(The processor is the new gate!)

Cisco’s Silicon Packet Processor
192 Xtensa processor cores per chip – 0.5 sq-mm each, 18M gates, 0.13 micron
All data moved via intelligent DMA channels without a common bus (not SMP)

Cisco ASR 1000
Aggregation Services Router family

Cisco CRS-1 Terabit Router

Source: Grant Martin, Tensilica