Module 3: Behavioral Synthesis
Lecture 3.5: Heuristic Scheduling – ASAP and ALAP

Anand Raghunathan
raghunathan@purdue.edu
Heuristic Scheduling Techniques

- Unconstrained
 - As soon as possible (ASAP)
 - As late as possible (ALAP)
- Scheduling as a graph partitioning problem
- List scheduling
- Force-directed scheduling
Y = ((a*b)+c)+(d*e)-(f+g)

ASAP Schedule: Example

The execution cycle of each operation is the least one allowed by the dependencies.
ASAP Scheduling Algorithm

ASAP (DFG $G(V, E)$)

```c
for each $v_i \in V$
  if($v_i$ is driven only by PIs)
    $t_i = 1$;

repeat
  for each $v_i \in V$
    if(predecessors of $v_i$ are all scheduled) {
      Schedule $v_i$ by setting $t_i = \text{MAX}(t_j + d_j)$;
    }

until all the nodes are scheduled;
```

Terminology:
- t_i: start cycle of v_i
- d_i: no. of cycles for v_i
- v_j is a predecessor of v_i
- if $(v_j, v_i) \in E$

Q: What is the worst-case time complexity of this algorithm?
ALAP Schedule: Example

\[Y = ((a\times b) + c) + (d \times e) - (f + g) \]

The execution cycle of each operation is the latest one allowed by the dependencies and the latency constraint.
ALAP Scheduling Algorithm

ALAP (DFG $G(V, E)$, Time T) {

 for each $v_i \in V$ {
 if (v_i drives POs)
 t_i (execution cycle of v_i) = T;
 }

 repeat {
 for each $v_i \in V$ {
 if (successors of v_i are all scheduled) {
 Schedule v_i by setting $t_i = \text{MIN}(t_j) - d_i$;
 }
 }
 }

 until all the nodes are scheduled;
}

Q: What is the worst-case time complexity of this algorithm?

Terminology:
- t_i: start cycle of v_i
- d_i: no. of cycles for v_i
- v_j is a successor of v_i if $(v_i, v_j) \in E$
Mobility (or Slack)

Y = ((a*b)+c)+(d*e)-(f+g)

Mobility is the difference of the execution cycles computed by ALAP and ASAP scheduling.
Scheduling as a Graph Partitioning Problem

- Given an acyclic data-flow graph $\text{DFG} = G(V, E)$
- Partition it into sub-graphs $S_1 \ldots S_k$ such that
 - The reduced graph formed by collapsing each partition into a single vertex is acyclic
 - Constraint ensures causality is maintained
 - Additional constraints
 - Longest path between ops in a single partition (limit clock period)
 - Number of operations of a given type in a single partition (limit area)