2.2. \(E(p) \) or \(E(k) \) relations

2.2a.

The velocity \(n(E) \) is **always** related to the momentum \(p(E) \) by the relation

(a) \(n = \frac{p}{m} \)

(b) \(n = \frac{p^2}{2m} \)

(c) \(n = 0 \) (constant independent of \(p \))

(d) \(n = \sqrt{\frac{2p}{m}} \)

(e) None of the above

\[
\frac{dE}{dp} \quad \text{. actual relation between velocity and momentum depends on energy-momentum relation. Parabolic \(E(p) \) gives choice (a).}
\]

2.2b.

A material with an energy momentum relation \(E(p) = E_c + Kp^d \) has a velocity \(n(E) \) (\(d \): number of dimensions, \(K \): positive constant)

(a) \(n \sim (E - E_c)^{1+(d/)} \)

(b) \(n \sim (E - E_c)^{1+(1/)} \)

(c) \(n \sim (E - E_c)^{1-(1/)} \)

(d) \(n \sim (E - E_c)^{1-(d/)} \)

(e) none of the above

\[
(E) = \frac{dE}{dp} = Kp^{1-(1/)} \sim (E - E_c)^{1+(1/)}
\]