4.2. Seebeck Coefficient

We have seen that the current can be written in terms of voltage and temperature differences in the form

\[I = G_0 V + G_S T \]

Where

\[G_0 = \int_{-\infty}^{+\infty} dE \left(\frac{\partial f_0}{\partial E} \right) G(E) \]

\[G_S = \int_{-\infty}^{+\infty} dE \left(\frac{\partial f_0}{\partial E} \right) \frac{E - m_0}{qT_0} G(E) \]

4.2a A device with the source hotter than the drain is left open-circuited so that current is zero. Relative to the source, the drain will become

(a) Negative, always
(b) Positive, always
(c) Positive, if \(G(E) \) increases with increasing \(E \) around \(E = \mu \)
(d) Negative, if \(G(E) \) increases with increasing \(E \) around \(E = \mu \)
(e) none of the above, drain and source have the same potential.

4.2b The magnitude of the Seebeck coefficient \(S \) is given by

(a) \(|S| = \frac{G_S}{G_0} \)

(b) \(|S| = G + G_S \)

(c) \(|S| = G - G_S \)

(d) \(|S| = G \ast G_S \)

(e) S is unrelated to G and GS