3.10a Summing Up …

- Follow the voltage IR NOT the heat I^2R

Voltage drop corresponds to intuition even on atomic scale

$$J = - \frac{\sigma_0}{q} \frac{d\mu}{dz}$$

- Electrochemical NOT Electrostatic Potential

ESP is smeared out

ESP is NOT constant even in equilibrium
3.10b Summing Up …

- Follow the voltage IR, NOT the heat I^2R.
- Electrochemical NOT Electrostatic Potential.

Benchmark:
- Boltzmann equation
- NEGF: Quantum Transport

NEGF-based Calculation
3.10c Summing Up …

- Follow the voltage \mathbf{V}
- NOT the heat I^2R
- Electrochemical NOT
- Electrostatic Potential

\[
\mu(E) = \frac{1}{1 + \exp\left(\frac{E - \mu(E)}{kT}\right)}
\]

Supriyo Datta Spring 2015

http://nanohub.org/groups/Lnebook
3.10d Summing Up …

- Follow the voltage IR
 - NOT the heat I^2R

- Electrochemical NOT
 - Electrostatic Potential

- Boltzmann equation
 - NEGF: Quantum Transport

- Quasi-Fermi Levels (QFL’s)
3.10e Summing Up …

- Follow the voltage IR
 - NOT the heat I^2R

- Electrochemical NOT
 - Electrostatic Potential

- Boltzmann equation
 - NEGF: Quantum Transport

- Quasi-Fermi Levels (QFL’s)

- Spin Potentials

$J = \sigma F \sim -d\phi/ dx$

Supriyo Datta Spring 2015

http://nanohub.org/groups/Inebook
Basic Concepts

1. The New Ohm’s Law
2. Quantum of Resistance
3. What & Where is the “Voltage”?

4. Heat & Electricity:
 Second Law & Information

FUNDAMENTALS OF NANOELECTRONICS

Coming up next ..

Source
Channel
Drain

Thermodynamics: Entropy driven
Mechanics: Force driven

Usually all mixed up !!

Supriyo Datta Spring 2015
http://nanohub.org/groups/Inebook