FUNDAMENTALS OF NANOELECTRONICS

Supriyo Datta

Spring 2015

The New Perspective

Drude Formula

Supriyo Datta

Spring 2015

Where is the Resistance?

- 1. The new perspective
- 2. Energy band model
- 3. What and where is the voltage?
- 4. Heat & electricity:

Second law & information

Resistance is associated with

> Joule Heating: T²R

Voltage drop: IR

Supriyo Datta

Spring 2015

What & where is the voltage?

- 1. The new perspective
- 2. Energy band model
- 3. What and where is the voltage?
- 4. Heat & electricity:

Second law & information

➢ Voltage drop: IR

➢Quasi-Fermi Levels (QFL)

Supriyo Datta

Spring 2015

Supriyo Datta

Spring 2015

Rigorous theory

"Elastic Resistor"

Part A: Semiclassical Transport

Provides approximate physical picture in general

Agrees with rigorous theory for low bias

 $E\psi = H\psi$

Schrodinger + 🔨 = NEGF

Part B: Quantum Transport

Supriyo Datta

Spring 2015

Supriyo Datta

Spring 2015

http://nanohub.org/groups/Inebook

Supriyo Datta

Spring 2015

Spin Transport

B. Quantum (Q) Model

- 1. Schrodinger Equation
- 2. Contact-ing Schrodinger
 - 3. NEGF Method
 - 4. Spin Transport

Similar to "Spin-flip Transistor" Bauer et al. 2001

Supriyo Datta

Spring 2015

FUNDAMENTALS OF NANOELECTRONICS

Prerequisite: Calculus,

Elementary Differential Equations

Part B requires Matrix Algebra

Text:

Lessons From Nanoelectronics: A New Perspective on Transport World Scientific (2012)

II Edition 2015: Manuscript will be available to registered students

First offered on nanoHUB-U,

Spring 2012

Supriyo Datta

Spring 2015