3.2. Quantum Point Contact

3.2a. The steps in the conductance versus μ of a ballistic 2D conductor (represented by a square lattice with α and β) occur when μ equals

(a) one of the eigenenergies of $[H]$

(b) (one of the eigenenergies of β) $\pm 2t$

(c) (one of the eigenenergies of α) $\pm 2t$

(d) (one of the eigenenergies of $[H]$) $\pm 2t$

(e) one of the eigenenergies of α

3.2b. For a 2D square lattice the matrices α and β can always be diagonalized simultaneously because

(a) the matrix β is always diagonal in every basis

(b) the matrix α is always diagonal in every basis

(c) the matrices α and β are both always diagonal in every basis

(d) neither of the matrices α and β is always diagonal, but we can find a basis that makes them both diagonal

(e) none of the above, the matrices α and β cannot always be diagonalized simultaneously