3.5. Graphene

- **3.5a.** The self-energy for a graphene contact
 - (a) can in general be obtained by transforming to a basis that diagonalizes both α and β
 - (b) cannot in general be obtained by transforming to a basis that diagonalizes both α and β
 - (c) can be obtained using the relation $\Sigma = \tau g \tau^+$
 - (d) both (a) and (c)
 - (e) both (b) and (c)
- **3.5b.** For large conductors the number of modes M(E) for both graphene and carbon nanotubes is given approximately by the semiclassical relation

(ignoring spin)

(a)
$$M(E) = 4k(E)W/\pi$$

(b)
$$M(E) = k(E)W/\pi$$

(c)
$$M(E) = 2k(E)W/\pi$$

(d)
$$M(E) = k(E)W/2\pi$$

(e)
$$M(E)=k(E)W/4\pi$$