4.8. Spin voltage

4.8a. The output voltage measured by the floating probe as a function of the angle \(\theta \) is given by \((\mu_c, \vec{\mu}_s : \text{charge and spin potentials in the channel}, \vec{P} : \text{Polarization of magnet}) \)

(a) \(\vec{\mu}_c = \vec{\mu}_c + \vec{P} \cdot \vec{\mu}_s \)
(b) \(\vec{\mu}_c = \vec{\mu}_c \vec{P} \times \vec{\mu}_s \)
(c) \(\vec{\mu}_c = \vec{P} \cdot \vec{\mu}_s \)
(d) \(\vec{\mu}_c = \vec{P} \times \vec{\mu}_s \)
(e) None of the above

4.8b. The output voltage measured by the floating probe should show oscillations as a function of the Rashba constant \(\eta \) in the channel

\[
H = \left(E_c - \frac{\vec{p}^2}{2m} \right) \tau - \frac{\eta}{\hbar} \hat{\sigma} \cdot (\hat{z} \times \vec{p})
\]

if the two magnets are parallel and point along

(a) either \(z \) or \(x \)
(b) either \(z \) or \(y \)
(c) either \(x \) or \(y \)
(d) \(y \)
(e) \(x \)

Hint: The Rashba term gives an effective magnetic field along \(y \) for electrons traveling along \(x \).