Unit 2: Essential Physics of the MOSFET

Lecture 2.1: Energy Band Diagram Review

Mark Lundstrom

lundstro@purdue.edu
Electrical and Computer Engineering
Purdue University
West Lafayette, Indiana USA
An energy band diagram is a plot of the bottom of the conduction band and the top of the valence band vs. position.

Energy band diagrams are a powerful tool for understanding semiconductor devices because they provide qualitative solutions to the semiconductor equations.
The Fermi level in equilibrium

The Fermi level is constant in equilibrium.

\[J_n = n\mu_n \frac{dF_n}{dx} = 0 = n\mu_n \frac{dE_F}{dx} \rightarrow E_F \text{ is constant} \]
Band bending

What happens when we apply a voltage to the gate?

$+V_G$

E_C

E_i

$V = 0$

E_F

E_V

x

Lundstrom: 2018
Voltage and electron potential energy

\[E = -qV \]

A positive potential **lowers** the energy of an electron.
Electrostatic potential causes band bending

\[PE = E_C(x) = E_C(\infty) - qV(x) \]

\[\frac{dE_C(x)}{dx} = -q \frac{dV(x)}{dx} = qE_x \]

The Fermi level is constant – even with a gate voltage applied because the current is zero.

\[n(x) = n_i e^{(E_p - E_i(x))/k_BT} \]

\[p(x) = n_i e^{(E_i(x) - E_F)/k_BT} \]
Band diagrams

1) Draw the band diagram

2) Read the band diagram

\[V(x) \propto -E_C(x) \]

\[\mathcal{E} \propto \frac{dE_C(x)}{dx} \]

\[\log n(x) \propto E_F - E_i(x) \]

\[\log \rho(x) \propto E_i(x) - E_F \]

\[\rho(x) \propto \frac{d^2 E_C(x)}{dx^2} \]

Lundstrom: 2018
Practice

Sketch vs. position:

- Electrostatic potential
- Electric field
- Electron density
- Hole density
- Space charge density
Another example: NP junction in equilibrium

far from the junction, the bands will be flat

N

\[n_0 \approx N_D \]

\[\rho \approx 0 \]

P

\[p_0 \approx N_A \]

\[\rho \approx 0 \]

the bands will bend near the junction

far from the junction, the bands will be flat

Lundstrom: 2018
Procedure: Equilibrium energy band diagram

1) Begin with E_F

2) Draw the E-bands where you know the carrier density then connect the two regions.

3) Then “read” the energy band diagram to obtain the electrostatic potential, electric field, carrier densities, and space charge density vs. position.
Energy band diagram

N-type bands are flat

transition region

P-type bands are flat

$L = -x_n$ $x = 0$ $x = x_p$

Lundstrom: 2018
Now, “read” the e-band diagram

1) Electrostatic potential vs. position

2) Electric field vs. position

3) Electron and hole densities vs. position

4) Space-charge density vs. position
1) Electrostatic potential?

\[V(x) \propto -E_C(x) \]

Diagram showing energy levels \(E_C \), \(E_F \), \(E_i \), and \(E_V \) as functions of \(x \).
Electrostatics: $V(x)$

$V(x) \propto -E_C(x)$

V_{bi} is the “built-in voltage”

$Lundstrom: 2018$
2) Electric field?

\[\mathcal{E} \propto \frac{dE_C(x)}{dx} \]

Diagram showing the electric field \(E \) as a function of position \(x \) with curves for different fields labeled as follows:

- \(E_C \)
- \(E_F \) (dashed red)
- \(E_i \) (dashed black)
- \(E_V \) (solid black)

Lundstrom: 2018
Electric field: $\mathcal{E}(x)$
3) Carrier densities?

\[\log n(x) \propto E_F - E_i(x) \]

\[\log p(x) \propto E_i(x) - E_F \]
Carrier densities vs. x

$n_{0N} = N_D$

$p_{0N} = n_i^2 / N_D$

$p_{0P} = N_A$

$n_{0P} = n_i^2 / N_A$

$Lundstrom: 2018$
4) Space charge density?

\[\rho(x) \propto d^2 E_C(x)/dx^2 \]
\[\rho(x) \propto dE/dx \]

\[E_C, E_F, E_i, E_V \]

\[\rho(x) \propto p(x) - n(x) + N_D(x) - N_A(x) \]
Electrostatics: $\rho(x)$

\[\rho(x) = q(N_D - n(x)) \]

\[\rho(x) = q(p(x) - N_A) \]
Summary

Three coupled, nonlinear
PDE's in three unknowns:

\[
\frac{\partial p}{\partial t} = -\nabla \cdot \left(\frac{\vec{J}_p}{q} \right) + G_p - R_p
\]

\[
\frac{\partial n}{\partial t} = -\nabla \cdot \left(\frac{\vec{J}_n}{-q} \right) + G_n - R_n
\]

\[
\nabla \cdot \left(K_S \varepsilon_0 \vec{E} \right) = \rho
\]

Drawing and then reading an E-band diagram
gives us a qualitative solution to these equations.
In the next lecture, we will use energy band diagrams to develop a qualitative understanding of MOSFET IV characteristics.