Random Lasers

Paul Chiang
Outline

• Laser Overview
• Conventional and Random
• Why Random Lasers?
• Category of Random Lasers
• Boosted Random Lasers
• Conclusion
Outline

• Laser Overview
 • Conventional and Random
 • Why Random Lasers?
 • Category of Random Lasers
 • Boosted Random Lasers
 • Conclusion
Laser Overview

History

Theory | 1917
Albert Einstein
Stimulated Emission

First Laser | 1960
Theodore Maiman
Hughes Research Lab

Photonic Bomb | 1968
Vladilen Letokhov
Strong Scattering

Ref. [1]
Laser Overview Components

INPUT SOURCE
- Electrical
- Optical

FEEDBACK
- High reflector
- Minimized scattering

GAIN MEDIUM
- Gas: CO$_2$
- Solid: Ruby, Nd:YAG Sapphire
- Liquid: Fluorescent dye
Outline

• Laser Overview
• Conventional and Random
• Why Random Lasers?
• Category of Random Lasers
• Boosted Random Lasers
• Conclusion
Conventional and Random

- Total reflection
- $L = \text{multiple} \times \lambda/2$

- No confinement
- Multiple scattering
- Gain path length > loss \rightarrow lasing

Ref. [2]
Outline

• Laser Overview
• Conventional and Random
• Why Random Lasers?
• Category of Random Lasers
• Boosted Random Lasers
• Conclusion
Why Random Lasers?

- Speed of transistor become saturated

Ref. [3]
Outline

• Laser Overview
• Conventional and Random
• Why Random Lasers?
• Category of Random Lasers
• Boosted Random Lasers
• Conclusion
Category of Random Lasers

Incoherent Feedback

LETTERS TO NATURE

Laser action in strongly scattering media

N. M. Lewandy, R. M. Balachandran, A. S. L. Gomes & E. Sauvain

- 3 mJ pump
- w/o scatters

- 3 mJ pump with scatters
- Amplitude / 20

FIG. 1. a, Emission spectrum of a 2.5×10^{-5} M solution of rhodamine 640 perchlorate in methanol pumped by 3-mJ (7-ns) pulses at 532 nm. b and c, Emission spectrum of the TiO$_2$ nanoparticle (2.8×10^{14} cm$^{-3}$) colloidal dye solution pumped by 2.2-mJ and 3-mJ (7-ns) pulses, respectively. The amplitude of the spectrum in b has been scaled up by a factor of 10, whereas that in c has been scaled down by a factor of 20.
Category of Random Lasers Incoherent Feedback

LETTERS TO NATURE

Laser action in strongly scattering media
N. M. Lewandy, R. M. Balachandran, A. S. L. Gomes & E. Sauvain

Ref. [4]
Category of Random Lasers
Coherent Feedback

Random Laser Action in Semiconductor Powder

H. Cao and Y. G. Zhao

Department of Physics and Astronomy, Materials Research Center, Northwestern University, Evanston, Illinois 60208-3112

Figure 3. Top view (a) and lift view (b) scanning electron micrographs of ZnO nanorods grown on a sapphire substrate. (c) Emission spectra of the ZnO nanorods when the incident pump power is (bottom to top) 3.2, 4.3, 6.1, 7.0 and 11.1 μJ/cm².

Figure 4. (a) Scanning electron micrograph of a microcluster of ZnO nanocrystals. (b) Optical image of the emitted light distribution across the cluster. The incident pump pulse energy is 2.1 ηJ. (c) Spectrally integrated emission intensity as a function of the incident pump pulse energy. (d) Spectrum of emission from the cluster at the incident pump pulse energy of 6.35 ηJ.

Line width 0.2 nm

Ref. [5],[12]-[16]
Outline

• Laser Overview
• Conventional and Random
• Why Random Laser?
• Category of Random Laser
• Random lasers boosted with Plasmonics and Metamaterials
• Conclusion
Boosted Random Laser

PLASMONICS (Resonance)

- Reduced threshold
- Enhanced signals
- Tunable wavelength
- Mode interactions

HYPERBOLIC MATEMATERIALS (Non-resonance)

- Reduced threshold
- Broadband enhanced signals
- Increased possibility of forming closed loop
Boosted Random Laser Plasmonics

Controlling Random Lasing with Three-Dimensional Plasmonic Nanorod Metamaterials
Zhuoxian Wang,1 Xiangeng Meng,1,2 Seung Ho Choi,1 Sebastian Knitter,5 Young L. Kim,1 Hui Cao,5 Vladimir M. Shalaev,1 and Alexandra Boltasseva1,6

- Tilted silver nanorod

Reduced threshold by increasing silver nanorod length due to strong scattering

Ref. [6]
Boosted Random Laser Plasmonics

- Tunable wavelength by gold nanoparticles
 - Annealing temp.
 - Concentration of gold colloidal solution
Boosted Random Laser Plasmonics

- Pump threshold vs shell thickness

Ref. [8]
Robust enhancement of random laser action assisted by hyperbolic metamaterials

Hung-I Lin\(^1\), Yu-Ming Liao\(^5\), Kun-Ching Shen\(^1\), and Yang-Fang Chen\(^1,2,3\)

\(^1\) Graduate Institute of Applied Physics, National Taiwan University, Taipei 106, Taiwan
\(^2\) Department of Physics, National Taiwan University, Taipei 106, Taiwan
\(^3\) Research Center for Applied Sciences, National Taiwan University, Taipei 115, Taiwan
\(^5\) Email: yfcchen@phys.ntu.edu.tw

Abstract: We use hyperbolic metamaterials to strongly enhance random laser action and reduce the lasing threshold. The excited high-\(k\) modes can increase the possibility of forming closed loop paths and decrease the energy consumption of photon propagation.

OCIS codes: (140.3460) Lasers; (166.3918) Metamaterials; (230.4170) Multilayers

\[\frac{k_x^2 + k_y^2}{\varepsilon_\parallel} - \frac{k_z^2}{|\varepsilon_\perp|} = \left(\frac{\omega}{c} \right)^2 \]

Ref. [9],[10]
Outline

• Laser Overview
• Conventional and Random
• Why Random Laser?
• Category of Random Laser
• Random lasers boosted with Plasmonics and Metamaterials
• Conclusion
Conclusion

ADVANTAGE

- Low cost
- Sample-specific wavelength of operation
- Small size
- Flexible shape
- CMOS compatibility

APPLICATION

- Imaging
- Medical diagnostics
- Display
- Miniature light source in photonic integrated circuit

Ref. [11]
Q & A
References

Slides

Theory
Anderson localized modes
Lucky photons on long path
Pre-localized modes
Delocalized, interacting modes
Several of these scenarios
Hyperbolic Metamaterials

\[\frac{k_x^2 + k_y^2 + k_z^2}{\varepsilon} = \left(\frac{\omega}{c} \right)^2 \]

\[- \frac{k_x^2 + k_y^2}{|\varepsilon_\parallel|} + \frac{k_z^2}{|\varepsilon_\perp|} = \left(\frac{\omega}{c} \right)^2 \]

\[\frac{k_x^2 + k_y^2}{\varepsilon_\parallel} - \frac{k_z^2}{|\varepsilon_\perp|} = \left(\frac{\omega}{c} \right)^2 \]

Ref. [9]