Nanophotonic Modeling Lecture 1.1: Introduction

Prof. Peter Bermel

Bandstructure Problem

- Amounts to solving an eigenvalue equation of the form: $\mathcal{H}\Psi = E\Psi$
- Examples include:

– Electronic bandstructure:
$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V(x)\right]\Psi(x) = \hbar\omega\Psi(x)$$

– Photonic bandstructure:

$$\nabla \times [\epsilon^{-1}(\nabla \times H)] = \left(\frac{\omega}{c}\right)^2 H$$

– Phononic bandstructure:

$$\nabla \times [C(\nabla \times u)] = -\rho \omega^2 u$$

Schrodinger's Equation

- Wavefunction Ψ describes extent of particle
- Also eigenfunction of Schrodinger's equation: $\mathcal{H}\Psi = E\Psi$
- Hamiltonian consists of kinetic and potential terms: $\mathcal{H} = T + V$
- Classically, $T=rac{p^2}{2m}$; if $p=-i\hbar
 abla$, $T=-rac{\hbar^2}{2m}
 abla^2$
- Probability of finding at x given by $|\Psi(x)|^2$

Free Particle

- A free particle has zero potential everywhere
- Schrodinger's equation becomes:

$$-\frac{\hbar^2}{2m}\nabla^2\Psi = E\Psi$$

Eigenfunction can be obtained analytically:

$$\Psi(x) = Ae^{\pm ikx}$$

Energy eigenvalue thus given by:

$$E = \frac{\hbar^2 k^2}{2m}$$

Infinite Quantum Well

- Example: proton in iron nucleus
- Potential $V(x) = \begin{cases} 0, & |x| < a/2 \\ \infty, & |x| \ge a/2 \end{cases}$
- Boundary condition:

$$\Psi(\pm a/2) = 0$$

Eigenfunctions are standing waves:

$$\Psi(x) = A \left[e^{ikx} + e^{-ikx} \right]$$

• By BC's,
$$k = \frac{n\pi}{a}$$
; $E = \frac{\hbar^2 n^2 \pi^2}{2ma^2}$

Finite Quantum Well

 Example: α-particle in U-235 nucleus

• Potential
$$V(x) = \begin{cases} 0, & |x| < a/2 \\ U, & |x| \ge a/2 \end{cases}$$

 Eigenfunctions inside box like before; outside region decays exponentially

Kronig-Penney Potential

- Example: 1D atomic crystal
- Potential $V(x) = \begin{cases} 0, & 0 < x < a/2 \\ U, & a/2 < x < a \end{cases}$
- And, V(x + a) = V(x)
- Boundary conditions:

$$\Psi(x + a) = \Psi(x)$$
?

 Will each electron be stuck in its own little well?

