Nanophotonic Modeling
Lecture 2.12: CAMFR Rationale

Prof. Peter Bermel
CAMFR: Rationale

- Many problems consist of layers with varying widths
- Examples:
 - LED stack
 - Rod-hole photonic crystal
- Natural form of solutions is semi-analytic, in terms of eigenmodes

CAMFR: Basic Strategy

- Break up structure into layers
- Calculate eigenmodes in each layer (of four types)
- Apply Lorentz reciprocity to match BC’s
- Propagate within layers using S-matrix method
- Apply inputs to calculate physical outputs
CAMFR: Eigenmode Decomposition

• This stage resembles BPM
• Begin with the Helmholtz equation:
 \[[\nabla^2 + \epsilon \mu \omega^2] \psi = \beta^2 \psi \]
• Where \(\psi \) represents \(E \)-field or \(H \)-field, and \(\beta \) is the eigenvalue (wavevector along \(z \))
• Write 3D solutions in this form for each layer:
 \[
 \begin{pmatrix}
 E(r) \\ H(r)
 \end{pmatrix}
 = \sum_k A_k e^{-j\beta_k z} \begin{pmatrix}
 E(r_t) \\ H(r_t)
 \end{pmatrix}
 \]
CAMFR: Eigenmode Decomposition

Can express eigenvalues in terms of $\text{Re } n_{eff}$ and $\text{Im } n_{eff}$
Eigenmode Classification

\[\text{Guided mode} \quad \text{Im} \beta = 0; \text{discrete} \]

\[\text{Complex mode} \quad \text{Im} \beta \neq 0; \text{Re} \beta \neq 0; \text{discrete complex-conjugate pairs} \]

\[\text{Radiation mode} \]

\[\text{Leaky mode} \quad \text{Im} \beta \neq 0; \text{Re} \beta \neq 0; \text{discrete} \]

\[\text{Re} \beta = 0 \text{ or } \text{Im} \beta = 0; \text{continuous} \]