Nanophotonic Modeling Lecture 4.8: Galerkin Method for Finite Element Problems

Prof. Peter Bermel

Static Equilibrium

Newton's Law for a 1D wire :

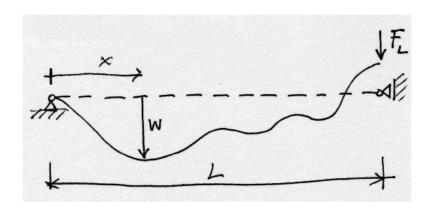
$$P\frac{\partial^2 w}{\partial x^2} + q = \mu \ddot{w}$$

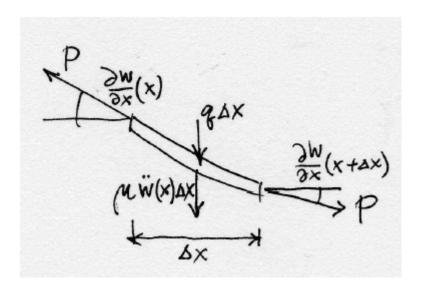
 In static equilibrium, forces balance exactly:

$$P\frac{\partial^2 w}{\partial x^2} + q = 0$$

• Define residual error in solution such that:

$$r_B = P \frac{\partial^2 w}{\partial x^2} + q$$





Galerkin Method

• In general, we want to apply Galerkin method with trial functions η_i :

$$\int_0^L dx \, \eta_j(x) r_B(x,t) = 0$$

- Analogy: stuff balloon into box, with each trial function a single 'finger'.
- Substituting: $\int_0^L dx \, \eta_j(x) \left[P \frac{\partial^2 w}{\partial x^2} + q \right] = 0$

Galerkin Method

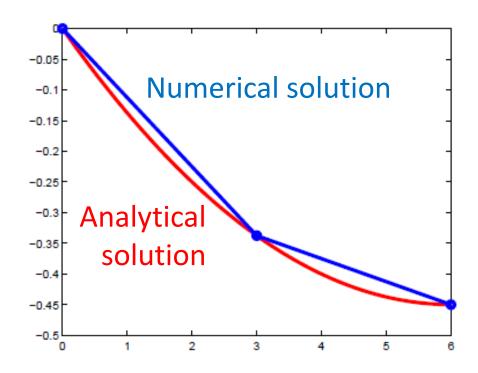
Integrating by parts:

$$0 = \left[\eta_j P \frac{\partial w}{\partial x} \right]_0^L + \int_0^L dx \left[\eta_j q - \frac{\partial \eta_j}{\partial x} P \frac{\partial w}{\partial x} \right]$$

• Letting boundary terms vanish and substituting linear basis ($w = \sum_i N_i w_i$) yields:

$$0 = \int_{0}^{L} dx \, \eta_{j} q - \sum_{i=1}^{N} \left(\int_{0}^{L} dx \, \frac{\partial \eta_{j}}{\partial x} P \, \frac{\partial N_{i}}{\partial x} \right) w_{i}$$
$$0 = \mathbf{b} - \mathbf{K} \mathbf{w}$$

Static Equilibrium



Numerical solution matches analytical solution closely at key points

Dynamic Equilibrium

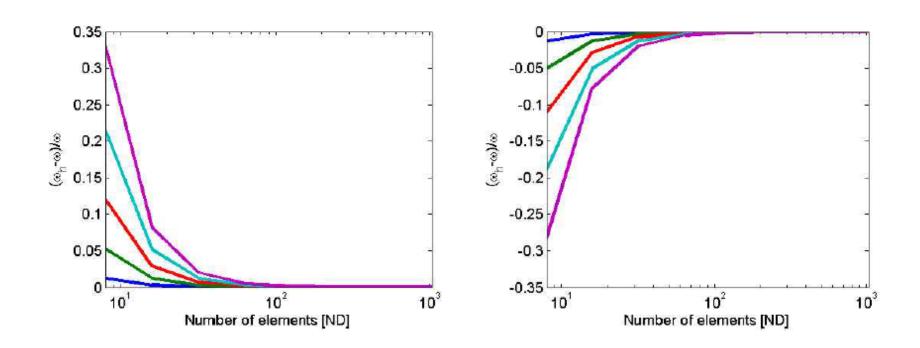
- Restoring time dependence will require tracking another second derivative term.
- In analogy with previous procedure, we can create another matrix, which yields:

$$0 = \boldsymbol{b} - \boldsymbol{K} \boldsymbol{w} - \boldsymbol{M} \ddot{\boldsymbol{w}}$$

• In absence of restoring force (q=0), we have harmonic solutions (${\pmb w}={\pmb \phi}e^{i\omega t}$), so that:

$$\mathbf{K}\boldsymbol{\phi} - \omega^2 \mathbf{M}\boldsymbol{\phi} = 0$$

Dynamic Equilibrium



Convergence for first 5 frequencies as a function of the number of elements