Lecture 4.4: Transmission Theory of the MOSFET: I

1) How does the transmission vary with drain bias?
 a) It increases as V_{DS} increases from 0 to V_{DD}.
 b) It decreases as V_{DS} increases from 0 to V_{DD}.
 c) It reaches a maximum for V_{DS} between 0 V and V_{DD}.
 d) It reaches a minimum for V_{DS} between 0 V and V_{DD}.
 e) It is independent of V_{DS}.

2) How is the linear region current in the presence of scattering, I_{LIN}, related to the ballistic linear region current, I_{LIN}^{ball}?
 a) $I_{LIN} = T_{LIN} I_{LIN}^{ball}$.
 b) $I_{LIN} = \left(\frac{T_{LIN}}{2} \right)^2 I_{LIN}^{ball}$.
 c) $I_{LIN} = \left(\frac{T_{LIN}}{1 + T_{LIN}} \right) I_{LIN}^{ball}$.
 d) $I_{LIN} = \left(\frac{T_{LIN}}{2 + T_{LIN}} \right) I_{LIN}^{ball}$.
 e) $I_{LIN} = \left(T_{LIN} \left(2 \frac{T_{LIN}}{1 + T_{LIN}} \right) \right) I_{LIN}^{ball}$.

3) How is the saturation region current in the presence of scattering, I_{SAT}, related to the saturation region current, I_{SAT}^{ball}?
 a) $I_{SAT} = T_{SAT} I_{SAT}^{ball}$.
 b) $I_{SAT} = \left(\frac{T_{SAT}}{2} \right)^2 I_{SAT}^{ball}$.
 c) $I_{SAT} = \left(\frac{T_{SAT}}{1 + T_{SAT}} \right) I_{SAT}^{ball}$.
 d) $I_{SAT} = \left(\frac{T_{SAT}}{2 + T_{SAT}} \right) I_{SAT}^{ball}$.
 e) $I_{SAT} = \left(T_{SAT} \left(2 \frac{T_{SAT}}{1 + T_{SAT}} \right) \right) I_{SAT}^{ball}$.