Unit 1: Transistor Fundamentals

Lecture 1.3: MOSFET Device Metrics

Mark Lundstrom

lundstro@purdue.edu
Electrical and Computer Engineering
Birck Nanotechnology Center
Purdue University, West Lafayette, Indiana USA

Lundstrom: Nanotransistors 2015
MOSFET IV characteristics

common source

\[I_{DS}(V_G, V_S, V_D) \]

\[I_{DS}(V_{GS}) \text{ at a fixed } V_{DS} \text{ transfer} \]

\[I_{DS}(V_{DS}) \text{ at a fixed } V_{GS} \text{ output} \]
Output characteristics

\[V_D : 0 \rightarrow V_{DD} \]

\[V_G : 0 \rightarrow V_{DD} \]

n-channel enhancement mode MOSFET

\[I_{DS} \quad V_G = V_{DD} \]
\[V_{G3} > V_{G2} \]
\[V_{G2} > V_{G1} \]
\[V_{G1} \]
\[V_{G0} < V_{G1} \]

Lundstrom: Nanotransistors 2015
Output characteristic at a specific V_{GS}

n-channel enhancement mode MOSFET

$Lundstrom: Nanotransistors 2015$
Output characteristics

Above threshold: $V_{GS} > V_T$

Below threshold: $V_{GS} < V_T$

Linear region: $V_D < V_{DSAT}$

Saturation region: $V_D > V_{DSAT}$

Drain saturation voltage: V_{DSAT}

Output resistance: r_o

Drain-Source resistance: R_{SD}
MOSFET device metrics (i)

- **Output resistance:**
 \[r_o \ (\Omega - \mu m) \]

- **On-current (μA/μm):**
 \[I_{DS}(V_{GS} = V_{DS} = V_{DD}) \]

- **Transconductance:**
 \[g_m = \left. \frac{\Delta I_{DS}}{\Delta V_{GS}} \right|_{V_{DS}} \ (\mu S/\mu m) \]
Output vs. **transfer** characteristics

output characteristics

\[I_{DS} \]
\[V_{GS} \]
\[V_{DSAT} \]

Fix **gate** voltage then sweep the **drain** voltage

transfer characteristics

\[I_{DS} \]
\[V_{DS1} \]
\[V_T \]
\[V_{GS} \]

Fix **drain** voltage then sweep the **gate** voltage
Transfer characteristics

$V_{DS2} = V_{DD} > V_{DS1}$

$V_{DS1} = 0.05 \, \text{V}$

"threshold voltage"
MOSFET transfer characteristics

\[I_{DS} \] (mA/\(\mu \)m)

\[V_{GS} \]

\[V_{DS} = V_{DD} \]

\[V_{DS} = 0.05 \text{ V} \]

\[V_{TSAT} \]

\[V_{TLIN} \]

\[V_{DD} \]

threshold voltage
MOSFET device metrics (ii)

\[\log_{10} I_{DS} \quad \text{(mA/\mu m)} \]

Transfer characteristics:

- Off-current

- Subthreshold swing: \((\text{mV/decade}) \)

- \(V_{DS} = V_{DD} \)

- \(I_{ON} \)

Lundstrom: Nanotransistors 2015
MOSFET device metrics (iii)

transfer characteristics:

\[\log_{10} I_{DS} \]

\((\text{mA/}\mu\text{m}) \)

\[V_{DS} = V_{DD} \]

\[V_{DS} = 0.05 \text{ V} \]

DIBL (drain-induced barrier lowering) \((\text{mV/V}) \)

\[I_{ON} \]

\[V_{GS} \]

\[V_{DD} \]

\[V_{T} \]
Summary

Given the measured characteristics of a MOSFET, you should be able to determine:

1. on-current: \(I_{ON} \)
2. off-current: \(I_{OFF} \)
3. subthreshold swing, SS
4. drain induced barrier lowering: DIBL
5. threshold voltage: \(V_T (\text{lin}) \) and \(V_T (\text{sat}) \)
6. Drain to source resistance: \(R_{DS} \)
7. drain saturation voltage: \(V_{DSAT} \)
8. output resistance: \(r_o \)
9. transconductance: \(g_m \)

Our goal is to understand these device metrics.
Example: 32 nm N-MOS technology

Answers

\[
\begin{align*}
I_{ON} & \approx 1.55 \text{ mA/\mu m} \\
I_{OFF} & \approx 0.1 \text{ \mu A/\mu m} \\
SS & \approx 95 \text{ mV/decade} \\
\text{DIBL} & \approx 110 \text{ mV/V} \\
R_{DS} & \approx 200 \text{ \Omega-\mu m} \\
r_o & \approx 2.5 \text{ K\Omega-\mu m} \\
g_m & \approx 3 \text{ mS/\mu m} \quad \text{(in the on-state)} \\
V_T & \approx 0.3 - 0.4 \text{ V} \\
V_{DSAT} & \approx 0.4 \text{ V} \quad \text{(for } V_{GS} = V_{DD})
\end{align*}
\]

(These values were read off of the plots on the previous slide and are only rough estimates.)
N-channel vs. P-channel MOSFET

n-MOSFET

\[V_S = 0 \quad V_G > V_T \quad V_D > 0 \]

p-MOSFET

\[V_S = 0 \quad V_G < V_T \quad V_D < 0 \]

Lundstrom: Nanotransistors 2015
Example: 32 nm P-MOS technology

Lecture 1.3 Wrap-up

We have learned how to extract some key device parameters (e.g. threshold voltage, drain saturation voltage) and device performance metrics (e.g. on-current and off-current).

Most of the course is about understanding the IV characteristics of nanoscale MOSFETs – qualitatively and quantitatively.

But in the next lecture, we’ll discuss some of the reasons for the device metrics (e.g. why is a high on-current important?).