Unit 1: Transistor Fundamentals

Lecture 1.4: Transistors to Circuits

Mark Lundstrom
lundstro@purdue.edu
Electrical and Computer Engineering
Birck Nanotechnology Center
Purdue University, West Lafayette, Indiana USA
Lecture 1.3 Summary

Given the measured characteristics of a MOSFET, you should be able to determine:

1. on-current: I_{ON}
2. off-current: I_{OFF}
3. subthreshold swing, SS
4. drain induced barrier lowering: DIBL
5. threshold voltage: V_T (lin) and V_T (sat)
6. Drain to source resistance: R_{DS}
7. drain saturation voltage: V_{DSAT}
8. output resistance: r_o
9. transconductance: g_m

How do these device parameters affect circuit performance?
N-MOSFETs

\[V_{GS} > V_T \quad V_T > 0 \]
\[V_{DS} > 0 \]
P-MOSFETs

PMOS

\[I_{DS} \]

\[V_{DS} \]

\[-V_{GS} \]

\[V_{GS} = -V_{DD} \]

\[V_{GS} < V_T \quad V_T < 0 \]

\[V_{DS} < 0 \]

Lundstrom: Nanotransistors 2015
Ideal CMOS inverter

\[V_{GSP} = V_{in} - V_{DD} \]

\[V_{GSN} = V_{in} \]

Lundstrom: Nanotransistors 2015
Ideal CMOS inverter

\[V_{in} = 0 \]
\[V_{in} = V_{DD} \]

\[V_{out} = V_{DD} \]
\[V_{out} = 0 \]

PMOS

NMOS

transfer characteristic

\[V_{in} \rightarrow \]

Lundstrom: Nanotransistors 2015
2-input NAND gate

AND
A B C
0 0 0
0 1 0
1 0 0
1 1 1

NAND
A B C
0 0 1
0 1 1
1 0 1
1 1 0

Lundstrom: Nanotransistors 2015
CMOS inverter

Real transfer characteristic

Lundstrom: Nanotransistors 2015
CMOS inverter: V_{out} vs. V_{in}

$V_{DD} = 1.0$ V

$V_{TN} = -V_{TP} = 0.15$ V

V_{out}

$Lundstrom: Nanotransistors 2015$
CMOS inverter: V_{out} vs. V_{in}

$V_{DD} = 1.0$ V

$V_{TN} = -V_{TP} = 0.15$ V

$V_{GS} = V_{in} - V_{DD}$

$V_{DS} = V_{out} - V_{DD}$

PMOS
CMOS inverter: V_{out} vs. V_{in}

$V_{DD} = 1.0 \text{ V}$

$V_{TN} = -V_{TP} = 0.15 \text{ V}$
CMOS inverter: current

Vin = 0: No current flows!

Vin = 1: No current flows!

No static power dissipation!

In practice: Little power dissipation when I_{OFF} is small!
CMOS inverter: noise margins

\[S \quad D \]

\[V_{DD} \]

\[V_{in} \rightarrow V_{out} \]

\[V_{out} \]

\[V_{DD} \]

\[V_{DD}/2 \]

\[NM_L \]

\[slope = -1 \]

\[NM_H \]

\[V_{in} \]

\[V_{DD} \]

Lundstrom: Nanotransistors 2015
Importance of gain

$Lundstrom: Nanotransistors 2015$

Must have gain to have noise margins

\[
\frac{dV_{out}}{dV_{in}} = A_v
\]

\[
\left| A_v \right| = 1
\]

\[
\frac{dV_{out}}{dV_{in}} = \frac{dV_{out}}{dI_{DS}} \frac{dI_{DS}}{dV_{in}} = r_0 g_m
\]

Must have adequate \(g_m r_o\).
CMOS inverter: summary

“pull up transistor”

1) Little current flow unless switching. (small power dissipation - low I_{off}).

2) Good noise margins if device has high gain (adequate $g_m r_o$).

“pull down transistor”

Next: understand speed and power.
Dynamic performance
Power dissipation

\[E_C(0) = \frac{1}{2} C_{sw} V_{DD}^2 \]

\[E_C(T / 2) = 0 \]

\[P_{dynamic} = \frac{\Delta E}{T / 2} = \frac{C_{sw} V_{DD}^2}{T} \]

Low power requires low voltage!

“activity factor”
Speed

\[V_{in}(t) \]

\[V_{DD} \]

\[V_{out}(t) \]

\[C_{sw} \]

\[I = C \frac{dV}{dt} \sim e^{-t/\tau} \]

input voltage

\[V_{in}(t) \]

\[V_{DD} \]

\[t_0 \]

output voltage

\[V_{out}(t) \]

\[V_{DD} \]

\[V_{DD} - \text{const}(t-t_0) \]

\[t \]

\[t_0 \]

\[t_1 \]
Speed

\[I = C \frac{dV}{dt} \]

\[I_{ON} = C_{SW} \frac{\Delta V}{\Delta t} = C_{SW} \frac{V_{DD}/2}{\tau} \]

\[\tau = \frac{1}{2} \frac{C_{SW} V_{DD}}{I_{ON}} \]

Speed is determined by the on-current!
Circuit performance

1) Switching energy: \[E_S = \frac{1}{2} C_{sw} V_{DD}^2 \]

2) Dynamic power: \[P_D = \alpha f C_{sw} V_{DD}^2 \]

3) Standby power: \[P_{SB} = I_{OFF} V_{DD} \]

4) Switching delay: \[\tau = \frac{C_{sw} V_{DD}}{2 I_{ON}} \]

5) Noise margins: \[|A_v| = g_m r_0 > 1 \]
Power constrained design

\[P_{\text{max}} = 100 \text{ W/cm}^2 \]

(Dave Frank, IBM)
Now that we understand a little bit about how circuit performance is related to key device metrics, we will focus for the rest of the course on how nanoscale transistors work.

Next topic: A simple (energy band) view of how MOSFETs work.