Fundamentals of Nanotransistors

Unit 2: MOS Electrostatics

Lecture 2.7: 2D MOS Electrostatics

Mark Lundstrom

lundstro@purdue.edu
Electrical and Computer Engineering
Birck Nanotechnology Center
Purdue University, West Lafayette, Indiana USA

Lundstrom: Nanotransistors 2015
Bulk MOSFETs

We have been discussing electrostatics normal to the channel.

MOSFET operation is determined by the 2D energy bands, which vary in space according to the 2D electrostatic potential: \(\psi(x, y) \)
Effect of 2D electrostatics on I_{DS} vs. V_{GS}

1) DIBL increases with decreasing L and increasing V_{DS}
2) SS may increase with decreasing L and increasing V_{DS}
3) “Punchthrough” is a severe 2D effect.
2D Poisson equation

\[\nabla \cdot \vec{D}(x,y) = \rho(x,y) \]

\[\vec{D}(x,y) = \varepsilon_s \vec{\mathcal{E}}(x,y) \]

\[\vec{\mathcal{E}}(x,y) = -\nabla \psi(x,y) \]

\[\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = -\frac{\rho(x,y)}{\varepsilon_s} \]
2D Poisson equation

1) 1D MOS Capacitor:

\[\frac{\partial^2 \psi}{\partial y^2} = -\frac{\rho}{\varepsilon_S} = \frac{qN_A}{\varepsilon_S} \quad \text{(below } V_T \text{)} \]

2) 2D MOSFET:

\[\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = \frac{qN_A}{\varepsilon_S} \quad \text{(below } V_T \text{)} \]

“gradual channel approximation”

\[\frac{\partial^2 \psi}{\partial y^2} \gg \frac{\partial^2 \psi}{\partial x^2} \quad \text{(long channel)} \]
Understanding V_T reduction

1) Short channel MOSFET below threshold:

\[
\frac{\partial^2 \psi}{\partial y^2} = \frac{qN_A}{\varepsilon_S} - \frac{\partial^2 \psi}{\partial x^2}
\]

\[
\frac{\partial^2 \psi}{\partial y^2} = \frac{qN_A|_{\text{eff}}}{\varepsilon_S}
\]

\[
N_A|_{\text{eff}} < N_A
\]

\[
V_T = V_{FB} + \frac{\sqrt{2qN_A\varepsilon_S(2\psi_B)}}{C_{ox}} + 2\psi_B
\]

(Lecture 2.3) Lundstrom: Nanotransistors 2015
Barrier lowering view

Ideally, only the gate controls the barrier height

\[I_{DS} \sim e^{-E_B/k_BT} \]

\[E_B = q(V_{bi} - \psi_S) \]

current does not change

\[q(V_{bi} - \psi_S) \]

low \(V_{DS} \)

high \(V_{DS} \)

drain depletion layer expands

Lundstrom: Nanotransistors 2015
No barrier lowering \Rightarrow no DIBL

\[
\log I_{DS} = e^{(V_{GS} - V_T)/mk_BT_L}
\]

$V_{DS} = 1.0 \text{ V}$

$V_{DS} = 0.05 \text{ V}$

no DIBL
Barrier lowering

\[E_C(x, y = 0) \]

\[\Delta E_B \]

\[q(V_{bi} - \psi_S) \]

Drain-Induced Barrier Lowering (DIBL)

\[I_{DS} \sim e^{-E_B/k_BT} \]

\[\frac{\Delta I_{DS}}{I_{DS}} = e^{\Delta E_B/k_BT} \]

low \(V_{DS} \)

high \(V_{DS} \)

Lundstrom: Nanotransistors 2015
Barrier lowering increases current

\[\log I_{DS} \]

\[V_{DS} = 1.0 \text{ V} \]
\[V_{DS} = 0.05 \text{ V} \]

\[\Delta I_{DS} = I_{DS}e^{\Delta E_B/k_B T} \]

SS is still independent of \(|V_{DS}|\).
Punchthrough

\[
\log I_{DS} = e^{(V_{GS}-V_T)/mk_BT}
\]

\[
V_{DS} = 1.0 \text{ V}
\]

\[
V_{DS} = 0.05 \text{ V}
\]

Lundstrom: Nanotransistors 2015
Punchthrough

\[N_A \text{ (min)} : \text{punch through} \]

\[W_S + W_D < L \]
A “well-tempered MOSFET”

(Dimitri Antoniadis, MIT)

The height of the barrier should be controlled by the gate voltage; the drain voltage should have only a small effect.
Controlling 2D electrostatics
(also known as “short channel effects”)

Need to design a short channel device to minimize 2D effects.

Question: How do we control 2D electrostatics in short channel MOSFETs?

Answer: Screen out the 2D fields.
Screening by free carriers

\[\psi(r) = \frac{q}{4\pi \varepsilon_s r} e^{-r/L_D} \]

\[L_D = \sqrt{\frac{\varepsilon_s k_B T}{q^2 n_0}} \]

Debye length

Lundstrom: Nanotransistors 2015
Geometric screening length: bulk MOSFET
Geometric screening length: DG MOSFET

\[T_{OX} = 1 \text{ nm} \]

Off-state: \(V_G = 0V, \ V_D = 1V, \ I_{off} = 0.1\mu A/\mu m \) (by H. Pal, Purdue, 2012)
Non-planar MOSFETs

Computing Λ

\[
\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = -\frac{\rho(x,y)}{\varepsilon_s} = -\frac{qN_A(x,y)}{\varepsilon_s}
\]

$\Lambda_{NW} < \Lambda_{DG\,SOI} < \Lambda_{SOI} < \Lambda_{BULK}$

$L_{\text{min}} \approx 3\Lambda$

2D electrostatics

\[\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = \frac{-qN_A(x,y)}{\varepsilon_S} \]

1) Effective doping

2) Barrier lowering

3) Geometric screening length

4) Capacitor model (lecture notes)
“Well-tempered MOSFET”

1) \(Q_n(0) \approx -C_{inv}(V_{GS} - V_T) \)

\[V_T = V_{T0} - \delta V_{DS} \]
\(m = \text{constant} \)

2) region under strong control of gate \((m \sim 1)\)

3) Additional increases in \(V_{DS} \) beyond \(V_{DSAT} \) drop near the drain and have a small effect on \(I_{DS} \) (small DIBL)
“Well-tempered MOSFET”

E_X vs. x for $V_{GS} = 0.5V$

Example

$L = 105 \text{ nm}$

$L = 85 \text{ nm}$

(Courtesy, Shuji Ikeda, ATDF, Dec. 2007)

Increased DIBL and SS
2D MOS electrostatics degrade device performance (increases DIBL and SS).

The goal of MOSFET design is to make 1D electrostatics hold at the VS – with small DIBL and a SS parameter, m, which is nearly one.

The way to achieve this is to engineer the device such that the gate voltage controls the height of the source to channel energy barrier.

Next Lecture: Let’s re-visit the VS model.