Physics of Electronic Polymers

Lecture 5.5:
Stretchable Organic Photovoltaic Devices

Learning Objectives
By the Conclusion of this Lecture, You Should be Able to:

1. **Describe** the balance between tensile modulus and device performance in poly(3-alkylthiophene)-based OPV devices as a function of alkyl chain length.

2. **Relate** the value of the crack onset strain to the likelihood that a given material will work well in a wearable OPV device.

Bryan W. Boudouris
Robert and Sally Weist Associate Professor
Davidson School of Chemical Engineering
Purdue University
Polythiophene Can Be Used in Stretchable OPV Devices

OPVs with Unique Form Factors

Reasonable Performance Metrics

Correlating P3AT Molecular Design with Mechanical Properties

Correlating P3AT Molecular Design with Performance Properties

Cracking is a Huge Issue in Stretchable and Flexible OPV Devices

Crack Formation Greatly Influences Device Performance upon Stretching

<table>
<thead>
<tr>
<th>Device</th>
<th>V_{OC} [V]</th>
<th>J_{SC} [mA cm$^{-2}$]</th>
<th>FF [%]</th>
<th>PCE [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3HT:PCBM (0%)</td>
<td>0.37 ± 0.005</td>
<td>5.52 ± 1.14</td>
<td>28.7 ± 3.02</td>
<td>0.594 ± 0.119</td>
</tr>
<tr>
<td>P3HT:PCBM (10%)</td>
<td>0.04 ± 0.003</td>
<td>0.66 ± 0.06</td>
<td>22.1 ± 4.91</td>
<td>0.008 ± 0.011</td>
</tr>
<tr>
<td>P3DDT:PCBM (0%)</td>
<td>0.50 ± 0.001</td>
<td>2.10 ± 0.57</td>
<td>27.7 ± 1.55</td>
<td>0.291 ± 0.088</td>
</tr>
<tr>
<td>P3DDT:PCBM (10%)</td>
<td>0.58 ± 0.034</td>
<td>1.88 ± 0.47</td>
<td>29.8 ± 3.66</td>
<td>0.381 ± 0.029</td>
</tr>
</tbody>
</table>

Stretchable Organic Electronics Allow for Wearable Devices

Next Time: Introduction to Polymer-based Bioelectronic Sensing