Primer on Semiconductors

Unit 4: Carrier Transport, Recombination, and Generation

Lecture 4.2: Current from the nanoscale to macroscale

Mark Lundstrom
lundstro@purdue.edu
Electrical and Computer Engineering
Purdue University
West Lafayette, Indiana USA

Lundstrom: 2018
Our goals in this lecture are:

1) To understand the current in a nano-device and the important concept of **quantized conductance**.

2) To use the Landauer Approach to derive a current equation for bulk (i.e. large) semiconductors.

Comment: Traditional semiconductor device physics is based on a current equation for bulk semiconductors. Nano-devices are increasingly important, but the macroscopic current equation continues to provide the overall framework for understanding semiconductor devices.
Landauer approach to current flow

\[I = \frac{2q}{h} \int \mathcal{F}(E) M(E) (f_1 - f_2) \, dE \]

Can be used to describe the current in small and large devices and in short to long devices.
We will restrict our attention to small applied voltages (or small electric fields in bulk semiconductors).

Things become more complicated at high electric fields, but we can often describe the effects by modifying the small electric field results.
Fermi window (small bias)

\[I = \frac{2q}{h} \int \mathcal{T}(E) M(E) (f_1(E) - f_2(E)) dE \]

\[f_1(E) = \frac{1}{1 + e^{\frac{E - E_{F_1}}{k_B T}}} = f_0(E) \]

\[\delta E_F = -qV \]

\[f_2(E) \approx f_1(E) + \frac{\partial f_1}{\partial E_F} \delta E_F \]

\[f_2(E) \approx f_1(E) + \left(-\frac{\partial f_1}{\partial E}\right) \delta E_F \]

\[f_2(E) - f_1(E) \approx -\left(-\frac{\partial f_0}{\partial E}\right) (qV) \]

Lundstrom: 2018
Fermi window: small bias

\[W_F(E) = \left(-\frac{\partial f_0}{\partial E} \right) \]

\[\int W_F(E) dE = 1 \]
Current for a small voltage difference

\[f_1(E) = \frac{1}{1 + e^{(E - E_{F1})/k_BT}} \]

\[f_2(E) = \frac{1}{1 + e^{(E - E_{F2})/k_BT}} \]

\[I = \frac{2q}{\hbar} \int \mathcal{T}(E) M(E) (f_1 - f_2) dE \]

\[f_1(E) - f_2(E) \rightarrow \left(-\frac{\partial f_1}{\partial E} \right) (qV) \Rightarrow I = GV \]

Lundstrom: 2018
Small bias conductance

\[I = GV \quad A \]

\[G = \frac{2q^2}{h} \int \mathcal{T}(E) M(E) \left(-\frac{\partial f_0}{\partial E} \right) dE \quad S \]
Conductance at $T = 0$ K

$$G(T = 0 \text{ K}) = \frac{2q^2}{h} \mathcal{T}(E_F) M(E_F)$$

For large W, M is ~ W

For small W, M comes in discrete units.

2D conductor

$$M(E) = W g_v \frac{\sqrt{2m^* E}}{\pi \hbar}$$
Quantized conductance

Ohm’s Law (1827)

We seek an equation for the current density in the +x direction.

In 3D: \[J_x = -\frac{I}{A} \]
Current equation in the bulk

\[
G = \frac{2q^2}{h} \int \mathcal{T}(E) M(E) \left(- \frac{\partial f_0}{\partial E} \right) dE \\
\mathcal{T}(E) = \frac{\lambda(E)}{\lambda(E) + L} \rightarrow \frac{\lambda(E)}{L}
\]

diffusive

\[
J_x = - \frac{I}{A} = \left\{ \frac{2q^2}{h} \int \frac{\lambda(E) M(E)}{L} \left(- \frac{\partial f_0}{\partial E} \right) dE \right\} V \\
\frac{qV}{L} = - \frac{dF_n}{dx}
\]

\[
J_x = \sigma_n \frac{d(F_n/q)}{dx} \\
\sigma_n = \frac{2q^2}{h} \int \lambda(E) \left(\frac{M(E)}{A} \right) \left(- \frac{\partial f_0}{\partial E} \right) dE
\]

Lundstrom: 2018
Current equation (3D bulk)

\[J_x = \sigma_n \frac{d(F_n/q)}{dx} \]

\(\sigma_n \): Conductivity (S/m) \quad \rho_n = 1/\sigma_n \): Resistivity (Ohm-m)

\(\sigma_n \equiv nq\mu_n \)

\(n \): electron density

\(q \): magnitude of the electronic charge

\(\mu_n \): mobility m²/V-s

Lundstrom: 2018
The quasi-Fermi level or electrochemical potential

The quantity, F_n, is analogous to the Fermi level, but it is defined out of equilibrium and reduces to the Fermi level in equilibrium.

\[
J_x = \sigma_n \frac{d(F_n/q)}{dx}
\]

In equilibrium, the current is zero:

\[
J_x = 0 = \sigma_n \frac{d(F_n/q)}{dx} \rightarrow \frac{dE_F}{dx} = 0
\]

The Fermi level is constant, independent of position, in equilibrium.
The mobility

The fundamental quantity is the **conductivity** – mobility is a derived quantity.

To relate the mobility to material properties, we should begin by evaluating the conductivity.
Landauer derivation of the mobility

\[\sigma_n = \frac{2q^2}{h} \int \lambda(E) \left(\frac{M(E)}{A} \right) \left(-\frac{\partial f_0}{\partial E} \right) dE \]

\[\lambda(E) = \lambda_0 \]

\[M(E)/A = \frac{m^*}{2\pi \hbar^2} (E - E_C) \]

\[f_0(E) = \frac{1}{1 + e^{(E - E_F)/k_B T}} \]

\[\sigma_n = \frac{2q^2}{h} \lambda_0 \left(\frac{m^* k_B T}{2\pi \hbar^2} \right) e^{(E_F - E_C)/k_B T} \text{ (nondegenerate)} \]

\[n_0 = \frac{1}{4} \left(\frac{2m_n^* k_B T}{\pi \hbar^2} \right)^{3/2} e^{(E_F - E_C)/k_B T} \]
Mobility

\[\sigma_n = n_0 q \left(\frac{\nu_T \lambda_0}{2 (k_B T / q)} \right) = n_0 q \mu_n \]

\[\mu_n \equiv \left(\frac{\nu_T \lambda_0}{2 (k_B T / q)} \right) \text{ cm}^2 / \text{V-s} \]

\[\nu_T = \sqrt{\frac{2 k_B T}{\pi m^*}} \text{ cm/s} \]

uni-directional thermal velocity

Note: \((k_B T / q) \mu_n = \left(\frac{\nu_T \lambda_0}{2} \right) = D_n \text{ cm}^2 / \text{s} \) (the diffusion coefficient discussed earlier.)
For small devices, M is countable.

For short devices, $T = 1$, ballistic.

A special case for large and long devices.