Unit 5: The Semiconductor Equations

Lecture 5.3: Quasi-Fermi levels

Mark Lundstrom

lundstro@purdue.edu
Electrical and Computer Engineering
Purdue University
West Lafayette, Indiana USA
Equilibrium vs. non-equilibrium

<table>
<thead>
<tr>
<th>Equation</th>
<th>Equilibrium</th>
<th>Non-equilibrium</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n_0)</td>
<td>(n_i e^{(E_F - E_i)/k_BT})</td>
<td>(n = n_i e^{(F_n - E_i)/k_BT})</td>
</tr>
<tr>
<td>(p_0)</td>
<td>(n_i e^{(E_i - E_F)/k_BT})</td>
<td>(p = n_i e^{(E_i - F_p)/k_BT})</td>
</tr>
<tr>
<td>(n_0 p_0 = n_i^2)</td>
<td></td>
<td>(np \neq n_i^2)</td>
</tr>
<tr>
<td>(f_0)</td>
<td>(\frac{1}{1 + e^{(E - E_F)/k_BT}})</td>
<td></td>
</tr>
<tr>
<td>(f_c)</td>
<td>(\frac{1}{1 + e^{(E - F_n)/k_BT}})</td>
<td>(1 - f_v = 1 - \frac{1}{1 + e^{(E - F_p)/k_BT}})</td>
</tr>
</tbody>
</table>

Lundstrom: 2018
The semiconductor equations

\[
\frac{\partial p}{\partial t} = -\nabla \cdot \left(\frac{\vec{J}_p}{q} \right) + G_p - R_p
\]

\[
\frac{\partial n}{\partial t} = -\nabla \cdot \left(\frac{\vec{J}_n}{-q} \right) + G_n - R_n
\]

\[
\nabla^2 V = -\frac{\rho}{K_s \varepsilon_0}
\]

Three equations in three unknowns:

\[
p(\vec{r}), \ n(\vec{r}), \ V(\vec{r})
\]

or:

\[
F_p(\vec{r}), \ F_n(\vec{r}), \ V(\vec{r})
\]

\[
\vec{J}_p = p\mu_p \vec{V} F_p
\]

\[
\vec{J}_n = n\mu_n \vec{V} F_n
\]

\[
\rho = q \left(p - n + N_D^+ - N_A^- \right)
\]

\[
\vec{E}(\vec{r}) = \nabla V(\vec{r})
\]
Where is the Fermi level?

N-type silicon in equilibrium

\[n_0 = N_D = 10^{17} \text{ cm}^{-3} \]

\[n_0 = n_i e^{(E_F - E_i)/k_B T} \]

\[p_0 = n_i e^{(E_i - E_F)/k_B T} \]

\[p_0 = \frac{n_i^2}{n_0} = 10^3 \text{ cm}^{-3} \]

Given either carrier density, we can determine the Fermi level.

Lundstrom: 2018
Now where is the Fermi level?

Now assume that there are 10^{14} cm$^{-3}$ excess carriers.

$$n \approx n_0 = 10^{17} \text{ cm}^{-3}$$

E_C

E_G

E_V

$$p = \Delta p = 10^{14} \text{ cm}^{-3} \gg p_0$$

a) Where it was in equilibrium
b) Closer to the conduction band
c) Closer to the valence band
d) Near the middle of the band
e) None of the above

Same # of electrons, more holes -> need 2 Fermi levels!
Quasi-Fermi levels

\[n = 10^{17} \text{ cm}^{-3} \]
\[E_C \quad F_n \approx E_F \]
\[E_i \quad F_p \]
\[E_V \quad p = 10^{14} \text{ cm}^{-3} \]

Non-equilibrium (low level injection)

\[n = n_i e^{(F_n - E_i)/k_BT} \approx n_0 \]
\[F_n = E_F \]
\[p = n_i e^{(E_V - F_p)/k_BT} \gg p_0 \]
\[F_p < E_F \]

Lundstrom: 2018
Non-equilibrium

When the QFL’s are split, the semiconductor is out of equilibrium.

In equilibrium: \(F_n = F_p = E_F \)

\[n = 10^{17} \text{ cm}^{-3} \]
\[p = 10^{14} \text{ cm}^{-3} \]
Equilibrium

\[n_0 = n_i e^{(E_F - E_i)/k_B T} \]

\[p_0 = n_i e^{(E_i - E_p)/k_B T} \]

\[n_0 p_0 = n_i^2 \]

Out of equilibrium

\[n = n_i e^{(E_n - E_i)/k_B T} \]

\[p = n_i e^{(E_i - E_p)/k_B T} \]

\[n p = n_i^2 e^{(E_n - E_p)/k_B T} \]

\[F_n > F_p \rightarrow np > n_i^2 \]

\[F_n < F_p \rightarrow np < n_i^2 \]
Some numbers (equilibrium)

N-type silicon in equilibrium

\[n_0 = N_D = 10^{17} \text{ cm}^{-3} \]

\[E_C \quad E_F \quad E_i \quad E_G \]

\[p_0 = \frac{n_i^2}{n_0} = 10^3 \text{ cm}^{-3} \]

\[n_0 = n_i e^{(E_F - E_i)/k_B T} \]

\[p_0 = n_i e^{(E_i - E_F)/k_B T} \]

\[(E_F - E_i) = k_B T \ln\left(\frac{n}{n_i}\right) \]

\[(E_F - E_i) = 0.026 \ln\left(\frac{10^{17}}{10^{10}}\right) \text{ eV} \]

\[(E_F - E_i) = 0.42 \text{ eV} \]

Lundstrom: 2018
Some numbers (LL injection)

\[n = n_i e^{(F_n - E_i)/k_B T} \]

\[p = n_i e^{(E_i - F_p)/k_B T} \]

\[(F_n - E_i) = k_B T \ln \left(\frac{n}{n_i} \right) = 0.026 \ln \left(10^7 \right) \]

\[(E_i - F_p) = 0.42 \text{ eV} \]

\[(E_i - F_p) = k_B T \ln \left(\frac{p}{n_i} \right) = 0.026 \ln \left(10^4 \right) \]

\[(E_i - F_p) = 0.24 \text{ eV} \]

Lundstrom: 2018
Note that it is possible for a semiconductor to be out of equilibrium (e.g. with current flowing), but with $F_n = F_p$.

$$n_0 = N_D = 10^{17} \text{ cm}^{-3}$$

$$p_0 = \frac{n_i^2}{n_0} = 10^3 \text{ cm}^{-3}$$

N-type semiconductor in equilibrium

N-type semiconductor resistor under bias
E-band diagram of an N-type resistor

Note that it is possible for a semiconductor to be out of equilibrium (e.g. with current flowing), but with $F_n = F_p$.

$$F_n = F_p$$

E_C

E_i

E_V

$p = p_0$

$E_C - F_n = E_C - E_F$

$n = n_0 = N_D$

$np = n_i^2$

No excess carriers
Assumptions

What assumption is involved in replacing the equilibrium Fermi level with two quasi-Fermi levels out of equilibrium?

In equilibrium, the probability that a state is occupied is given by:

\[f_0(E) = \frac{1}{1 + e^{(E-E_F)/k_BT}} \]

We assume that the same function describes the occupation of states in the conduction and valence bands if we simply replace the Fermi level by the appropriate QFL:

\[f_C(E) = \frac{1}{1 + e^{(E-E_n)/k_BT}} \]

\[1 - f_V(E) = 1 - \frac{1}{1 + e^{(E-E_p)/k_BT}} \]

Lundstrom: 2018
Summary

Equilibrium:

\[E_F \]

\[f_0(E) = \frac{1}{1 + e^{(E-E_F)/k_BT}} \]

Out of Equilibrium:

\[F_n \]

\[f_C(E) = \frac{1}{1 + e^{(E-F_n)/k_BT}} \]

\[F_p \]

\[1 - f_V(E) = 1 - \frac{1}{1 + e^{(E-F_p)/k_BT}} \]

This assumption can be expected to work if we are close enough to equilibrium.