We have seen that the current and the heat current can be written in terms of voltage and temperature differences in the form

\[I = G_1 V + G_2 T \]

\[I_Q = G_3 V + G_4 T \]

1.4a. A device is left open-circuited so that current is zero. The ratio of the heat current to the temperature difference is given by

 (a) \(G_Q \)

 (b) \(G_Q = \left(\frac{G_P G_S}{G} \right) \)

 (c) \(G_Q + \left(\frac{G_P G_S}{G} \right) \)

 (d) \(G_Q + G_P \)

 (e) None of the above

1.4b. The coefficients \(G_P \) and \(G_S \) are related by

 (a) \(G_P = T G_S \)

 (b) \(G_S = T G_P \)

 (c) \(G_P + G_S = T \)

 (d) \(G_P, G_S = T \)

 (e) None of the above, they are not related