ANSWERS: Quiz: Week 2 Lecture 1 Thermoelectrics from Atoms to Systems Mark Lundstrom, nanoHUB-U Fall 2013

Answer the **five questions** below by choosing the **one**, **best answer**.

1) Which of the expressions below is the proper Landauer expression for the current?

a)
$$I = \frac{2q}{h} \mathcal{T}(E)M(E)(f_1 + f_2)dE$$

b)
$$I = \frac{2q^2}{h} \mathring{\mathfrak{g}} \mathcal{T}(E) M(E) (f_1 + f_2) dE$$

c)
$$I = \frac{2q}{h} \mathcal{T}(E)M(E)(f_1 - f_2)dE$$

d)
$$I = \frac{2q^2}{h} \tilde{\mathfrak{d}} \mathcal{T}(E) M(E) (f_1 - f_2) dE$$

e)
$$I = \frac{2q}{h} \mathcal{T}(E) M(E) (f_1 + f_2) dE$$

2) Which of the expressions below is the proper expression for the transmission in terms of the mean-free-path for backscattering, / , and the device length, L?

a)
$$\mathcal{T}(E) = \frac{L}{/(E) + L}$$

b)
$$\mathcal{T}(E) = \frac{I(E)}{I(E) + L}$$

c)
$$\mathcal{T}(E) = \frac{/(E)L}{/(E)+L}$$

d)
$$\mathcal{T}(E) = \frac{L - I(E)}{I(E) + L}$$

e)
$$\mathcal{T}(E) = \frac{I(E) - L}{I(E) + L}$$

(continued on next page)

Mark Lundstrom

Quiz: Week 2 Lecture 1 (continued)

- 3) Which of the two thermoelectric coefficients are <u>fundamentally</u> related.
 - a) S, S
 - b) *s*, *p*
 - c) S, K_e
 - **d)** S, p
 - e) S, k_e
- 4) What are the units of the differential conductivity?
 - a) Ohms.
 - b) One over Ohms (or Siemens).
 - c) Ohm-meter
 - d) Siemens/meter
 - e) Siemens/meter-Joule.
- 5) What is the "Fermi window"?
 - a) The range of energies for which f_1 and f_2 differ.
 - b) The range of energies for which $\P f_0/\P E$ is significantly non-zero.
 - c) The range of energies that contribute to current flow.
 - d) All of the above.
 - e) None of the above.

End of quiz. This quiz contains 5 questions.