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coupled charge and heat currents 

electrical current: 

heat current (lattice): 

heat current (electronic): 
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Lecture 2 topics 
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1) Conductivity 
 

2) Seebeck (and Peltier) coefficient 
 

3) Thermal conductivity 
 

4) Relations between the coefficients 

Goal:  Develop an understanding and “feel” for: 



4 

1) conductivity (non-degenerate case) 
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(non-degenerate) 
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conductivity (degenerate case) 
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Conductivity not directly 
proportional to n0, but… 
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conductivity (general case) 

Lundstrom nanoHUB-U Fall 2013  

“quantum of 
conductance” 

average number of 
channels in the Fermi 

window 
average mfp 

for backscattering 
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measured conductivity 
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By controlling the doping, we vary 
the carrier density over ~ 6-7 
orders magnitude.  

At the same time, the Fermi level 
varies. 

impurity concentration cm-3 
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S.M. Sze, Physics of Semiconductor 
Devices, 2nd Ed., p. 33, 1981. 
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carrier concentration and the Fermi level 
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( )F F C BE E k Tη = −

parabolic energy bands 

(non-degenerate semiconductor) 

For an introduction to Fermi-Dirac integrals, see: 
“Notes on Fermi-Dirac Integrals,” 3rd Ed., by R. Kim and M. Lundstrom 
https://www.nanohub.org/resources/5475 
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location of the Fermi level 
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( )F F C BE E k Tη = −

1) Doping determines the carrier concentration. 
 

2) The carrier concentration determines the Fermi level. 
 
 
 

3) The location of the Fermi level controls the conductivity. 

4) The location of the Fermi level also determines the 
Seebeck coefficient. 
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2) Seebeck coefficient 
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S is negative for n-type 
semiconductors and positive 
for p-type semiconductors. 
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Seebeck coefficient of Ge 

Exp. data:   T.H. Geballe and G.W. Hull, “Seebeck Effect in Germanium,” Physical Review, 94, 
1134, 1954.   

(3D, non-degenerate) 

(degenerate) 
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Seebeck coefficient of different materials 

Changwook Jeong, et al., “On Landauer vs. Boltzmann and Full Band vs. Effective 
Mass Evaluation of Thermoelectric Transport Coefficients,” J. Appl. Phys., 107, 
023707, 2010. 
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3) electronic thermal conductivity 

electrical current: 

heat current (electronic): 
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heat current (lattice): 

1) conductivity (resistivity) 
 
 
2) Seebeck coefficient (thermopower) 
     and Peltier coefficient 
 
3) Electronic thermal conductivity 
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electronic thermal conductivity 
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Onsager 
relations for 

coupled flows 
(fundamental) 

Kelvin relation 

We expect a relation between the electrical conductivity and the 
electronic thermal conductivity, but it is not fundamental; it depends 
material details. 
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electronic thermal conductivity 
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Wiedemann-Franz “Law” 
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electronic heat conductivity 
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L  is the “Lorenz number” 

The Lorenz  number depends on details of bandstructure, scattering, 
dimensionality, and degree of degeneracy, but for a constant mfp and 
parabolic energy bands, it is useful to remember: 

non-degenerate, 
3D semiconductors 

fully degenerate  
e.g. 3D metals 
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basic TE equations with phonons 
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Five transport coefficients: 

1)   Resistivity (Ω-cm) = 1/conductivity (S/cm) 
2)   Seebeck coefficient (V/K) 
3) Peltier coefficient (W/A) 
4) Electronic thermal conductivity (W/m-K) 
5) Lattice thermal conductivity (W/m-K) 

Note:  “phonon drag” 
neglected. 
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lattice thermal conductivity 

Both electrons and lattice vibrations carry heat – we have 
been discussing the electronic part. 

In metals, heat conduction by electrons dominates: 

In semiconductors, lattice vibrations dominate: 
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transport coefficients:  recap 
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conductivity 

Seebeck coefficient or “thermopower” 

lattice thermal conductivity 

W-F “law” - L  is the “Lorenz number” 
electronic thermal conductivity 

Kelvin relation 

Peltier coefficient 
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example:  TE transport parameters of n-Ge 
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(conductivity effective mass) 
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example:  mean-free-path of n-Ge 
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TE transport parameters of n-Ge:  resistivity 
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TE transport parameters of n-Ge:  Seebeck coeff. 
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(non-degenerate, 3D) 
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TE transport parameters of n-Ge:  Peltier coeff. 
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TE transport parameters of n-Ge:  Peltier coeff. 
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(Lorenz number) 

(non-degenerate, 3D) 
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TE transport parameters of n-Ge: 
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All of these parameters depend on the temperature and carrier 
concentration (Fermi level). 
 
Note also: 
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summary:  basic equations with phonons 
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