Week 11 Lecture 27 Quiz: Scattering: Relaxation Time Approximation

ECE 656: Electronic Conduction In Semiconductors

Mark Lundstrom Purdue University, Fall 2013

Student's name:	

Answer the **multiple choice questions** below by choosing the **one, best answer**. Then **ask a question** about the lecture.

1) When we write the collision integral in the Relaxation Time Approximation,

$$\hat{C}f(\vec{r},\vec{p},t) = -\frac{(f-f_s)}{\tau_f(\vec{r},\vec{p})},$$

what is the characteristic time, $\tau_{_f}$?

- a) The scattering time.
- b) The momentum relaxation time.
- c) The energy relaxation time.
- d) All of the above.
- e) None of the above.

2) When we write the collision integral in the Relaxation Time Approximation,

$$\hat{C}f(\vec{r},\vec{p},t) = -\frac{(f-f_S)}{\tau_f(\vec{r},\vec{p})},$$

why do we use f_s rather than the equilibrium, f_0 ?

- a) Because we are not exactly at equilibrium.
- b) To be sure that the number of carriers is conserved.
- c) To the sure that the momentum of the carriers is conserved...
- d) To the sure that the energy of the carriers is conserved..
- e) To the sure that the heat of the carriers is conserved..
- 3) Under what conditions is the Relaxation Time Approximation,

$$\hat{C}f(\vec{r},\vec{p},t) = -(f - f_s)/\tau_f(\vec{r},\vec{p})$$

valid?

- a) Near equilibrium
- b) Near equilibrium with Maxwell-Boltzmann statistics with elastic scattering.
- c) Near equilibrium with Maxwell-Boltzmann statistics with isotropic scattering
- d) Near equilibrium with elastic scattering or isotropic scattering with Maxwell Boltzmann statistics.
- e) Near equilibrium with isotropic scattering or inelastic scattering with Maxwell Boltzmann statistics.

- 4) Which of the following statements is true under near equilibrium conditions?
 - a) In general, the RTA accurately describes the in-scattering process.
 - b) In general, the RTA accurately describes the out-scattering process.
 - c) In general, the RTA accurately describes both the in- and out-scattering processes
 - d) For specific conditions, the RTA accurately describes both in-scattering and outscattering.
 - e) None of the above.
- 5) Consider the following two equations;

$$\sum_{p'} S(\vec{p}', \vec{p}) f(\vec{p}') - \sum_{p'} S(\vec{p}, \vec{p}') f(\vec{p}) = 0$$
 (i)
$$S(\vec{p}', \vec{p}) f(\vec{p}') - S(\vec{p}, \vec{p}') f(\vec{p}) = 0$$
 (ii)

$$S(\vec{p}', \vec{p})f(\vec{p}') - S(\vec{p}, \vec{p}')f(\vec{p}) = 0$$
 (ii)

What are these equations statement of?

- a) detailed balance
- b) steady-state conditions.
- c) (i) detailed balance and (ii) steady-state conditions.
- d) (i) steady-state conditions and (ii) detailed balance.
- e) none of the above
- 6) What question do you have about this lecture?

Turn in to Prof. Lundstrom in class on Friday, Nov. 1.