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Fourier Series
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What happens when L>>L?

f(x)=a, + Z:{an cos(ml_nxj +b_sin ( 27anxﬂ

Progressively more terms are required in the Fourier
Series before the waveform is adequately approximated.

In the limit, when the waveform consists of only ONE
pulse (what's the periodicity?), a continuous distribution
of sines and cosines are required.




The Fourier Transform
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In this case, f(x) is no longer periodic. To reconstruct f(x), we now require
a continuous distribution of sines and cosines (k is no longer discretel). The
sums become integrals. Instead of the a, and b,, f(x) is now specified by

some function g(k) according to

f (X) = % f g(k)e"dk

Once f(x) is known, the function g(k) can be calculated from

g(k') =% j f (x)e " dx

Note: This is now called a Fourier Transform, not a Fourier Series



Points to Ponder
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1. Remember, you know f(x) AND you must specify a value for k'

2. Ingeneral, g(k') will be a complex number

3. The Fourier Transform is really an “ideal” model because
= it requires a function f(x) that goes from -ow to +w like a
= it requires an infinite number of k' infinity

4. For every k' you specify, you need to perform the integral to get the
value of g(k' ) - so you need to perform an infinite number of integrals

5. Sometimes, the integration works out so you have an analytical form
for g(k ') - this is somewhat of a special case

6. In a Fourier Series, you can understand one term, but in a Fourier
transform, it's very difficult to comprehend a single term because there
are an infinite number of them, they span both positive and negative
values of k' AND g(k') for a specific k' can be a complex number



What the Fourier Transform does

[ Pick a k'=k’, ]
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Integrating Graphically

~asingle pulse!
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Working out the math
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g(k) has real and
imaginary parts
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Check it out!
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Appendix: Using the Fourier Transform, you can
now find the momentum eigenfunctions for the
infinite square well



Application: Find the Momentum Eigenfunction for the n=3
quantum state in the Infinite Square Well
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Choose n=3 for the Infinite Square Well - calculate
the momentum eigenfunction
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Note: math details included at end of Appendix




PLOTTING the RESULTS (n=3 for infinite square well)
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The Math Details
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