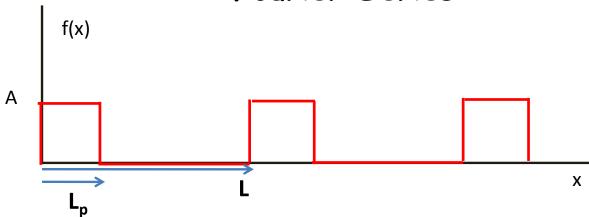
Modern Physics

Unit 4: Heisenberg's Uncertainty Principle

Lecture 4.4: The Fourier Integral

Ron Reifenberger Professor of Physics Purdue University

Fourier Series



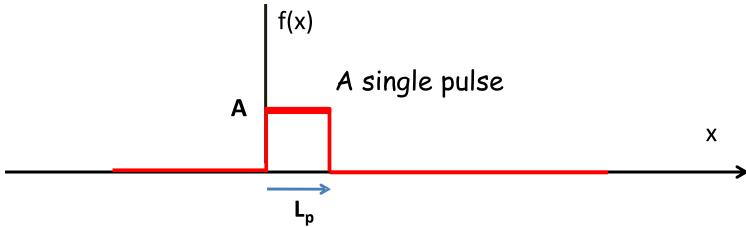
What happens when $L >> L_p$?

$$f(x) = a_o + \sum_{n=1}^{N} \left[a_n \cos\left(\frac{2\pi nx}{L}\right) + b_n \sin\left(\frac{2\pi nx}{L}\right) \right]$$

Progressively more terms are required in the Fourier Series before the waveform is adequately approximated.

In the limit, when the waveform consists of only ONE pulse (what's the periodicity?), a <u>continuous</u> distribution of sines and cosines are required.

The Fourier Transform



In this case, f(x) is no longer periodic. To reconstruct f(x), we now require a continuous distribution of sines and cosines (k is no longer discrete!). The sums become integrals. Instead of the a_n and b_n , f(x) is now specified by some function g(k) according to

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} g(k)e^{ikx}dk$$

Once f(x) is known, the function g(k) can be calculated from

$$g(k') = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-ik'x} dx$$

Note: This is now called a Fourier Transform, not a Fourier Series

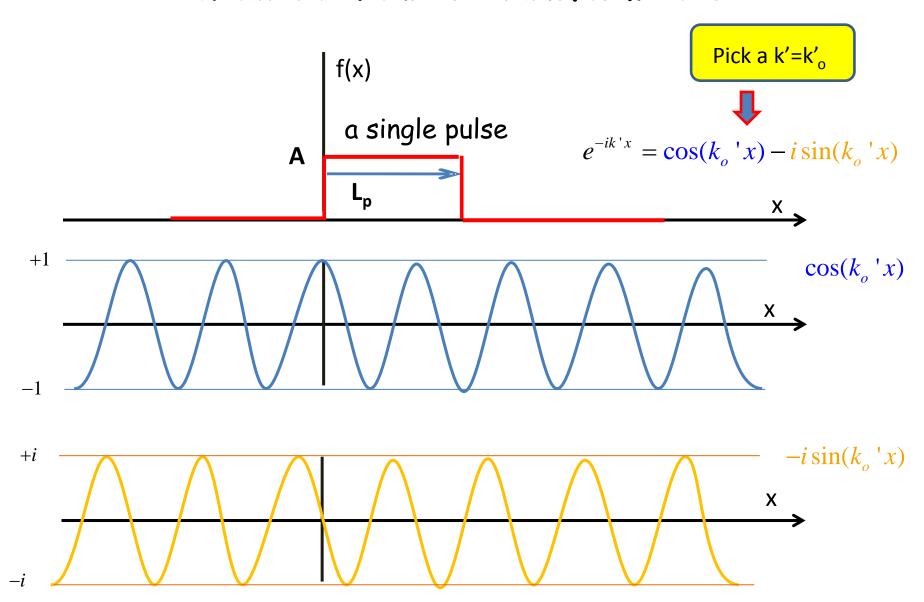
Points to Ponder

$$g(k') = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-ik'x} dx$$

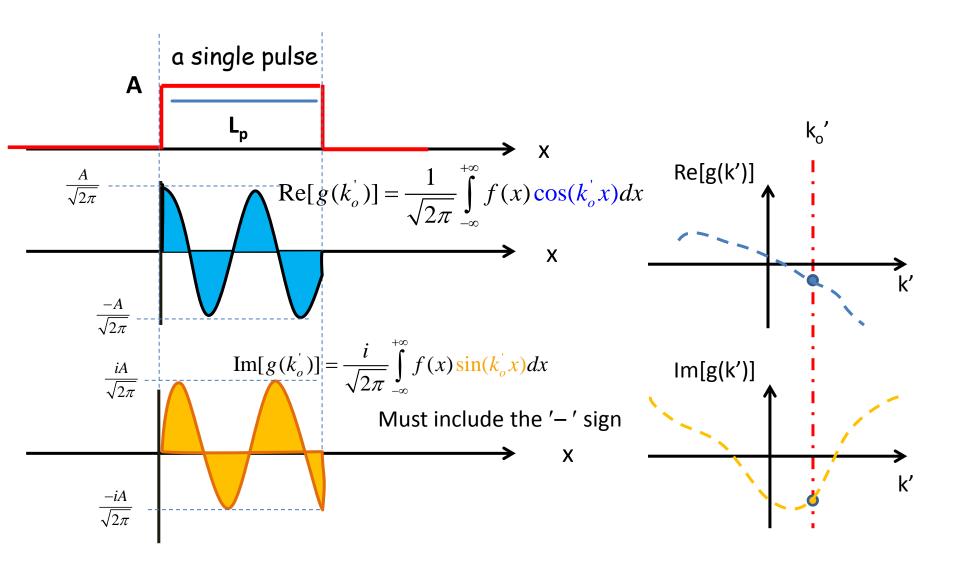
- 1. Remember, you know f(x) AND you must specify a value for k'
- 2. In general, g(k') will be a complex number
- 3. The Fourier Transform is really an "ideal" model because
 - it requires a function f(x) that goes from -∞ to +∞
 it requires an infinite number of k'
 - it requires an infinite number of k'

- 4. For every k' you specify, you need to perform the integral to get the value of g(k') - so you need to perform an infinite number of integrals
- 5. Sometimes, the integration works out so you have an analytical form for g(k') - this is somewhat of a special case
- 6. In a Fourier Series, you can understand one term, but in a Fourier transform, it's very difficult to comprehend a single term because there are an infinite number of them, they span both positive and negative values of k' AND g(k') for a specific k' can be a complex number

What the Fourier Transform does



Integrating Graphically



Working out the math

$$g(k') = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-ik'x} dx = \frac{1}{\sqrt{2\pi}} \int_{0}^{L_p} Ae^{-ik'x} dx$$

$$\begin{split} &=\frac{A}{\sqrt{2\pi}}\frac{e^{-ik'x}}{-ik'}\bigg|_{0}^{L_{p}} = \frac{A}{\sqrt{2\pi}}\Bigg[\frac{e^{-ik'L_{p}}-1}{-ik'}\Bigg] \\ &=\frac{A}{\sqrt{2\pi}}e^{-ik'L_{p}/2}\Bigg[\frac{e^{-ik'L_{p}/2}-e^{ik'L_{p}/2}}{-ik'L_{p}/2}\Bigg]\frac{L_{p}}{2} = \frac{A}{\sqrt{2\pi}}e^{-ik'L_{p}/2}\Bigg[\frac{e^{ik'L_{p}/2}-e^{-ik'L_{p}/2}}{ik'L_{p}/2}\Bigg]\frac{L_{p}}{2} \\ &=\frac{AL_{p}}{\sqrt{2\pi}}e^{-ik'L_{p}/2}\Bigg[\frac{e^{ik'L_{p}/2}-e^{-ik'L_{p}/2}}{2i}\Bigg]\frac{1}{k'L_{p}/2} \end{split}$$

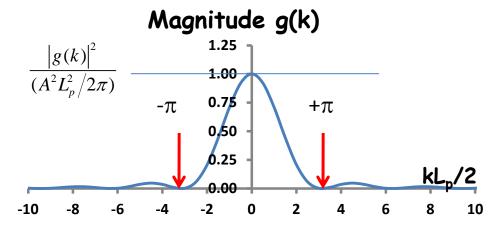
$$=\frac{AL_{p}}{\sqrt{2\pi}}e^{-ik'L_{p}/2}\left[\frac{\sin\left(\frac{k'L_{p}}{2}\right)}{\left(\frac{k'L_{p}}{2}\right)}\right]$$

Note that now, there is NO restriction on k'

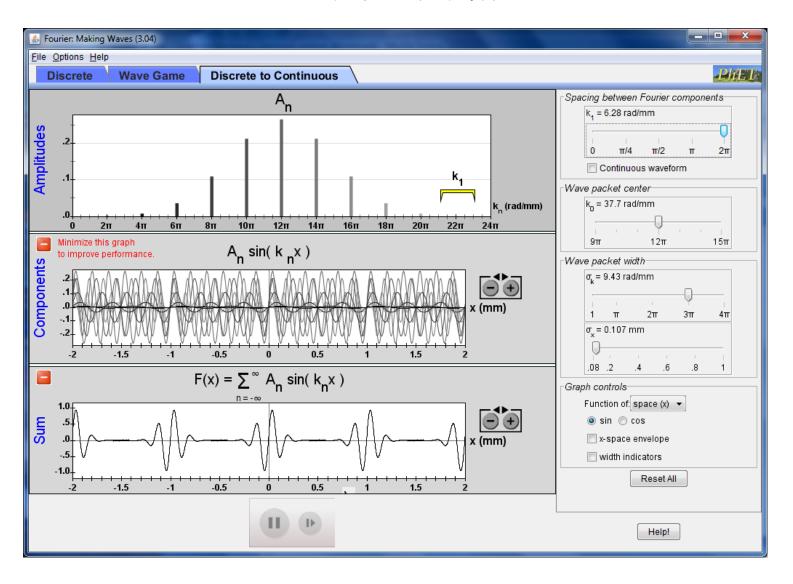
$$g(k) = \frac{AL_p}{\sqrt{2\pi}} e^{-ikL_p/2} \left[\frac{\sin\left(\frac{kL_p}{2}\right)}{\left(\frac{kL_p}{2}\right)} \right]$$

$$g(k) = \frac{AL_p}{\sqrt{2\pi}} \left[\frac{\sin\left(\frac{kL_p}{2}\right)}{\left(\frac{kL_p}{2}\right)} \right] \cos\left(\frac{kL_p}{2}\right) - i \frac{AL_p}{\sqrt{2\pi}} \left[\frac{\sin\left(\frac{kL_p}{2}\right)}{\left(\frac{kL_p}{2}\right)} \right] \sin\left(\frac{kL_p}{2}\right) \qquad \text{imaginary parts}$$

$$|g(k)|^2 = g^*(k)g(k) = \frac{A^2L_p^2}{2\pi} \left[\frac{\sin\left(\frac{kL_p}{2}\right)}{\left(\frac{kL_p}{2}\right)} \right]^2$$
 magnitude of $g(k)$



Check it out!



http://phet.colorado.edu/simulations/sims.php?sim=Fourier_Making_Waves

Appendix: Using the Fourier Transform, you can now find the momentum eigenfunctions for the infinite square well

Application: Find the Momentum Eigenfunction for the n=3 quantum state in the Infinite Square Well

$$\Phi_n(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \Psi_n(x) e^{-ikx} dx = \frac{1}{\sqrt{2\pi}} \int_{-L/2}^{+L/2} \Psi_n(x) e^{-ikx} dx$$

The Infinite Square Well - as an example

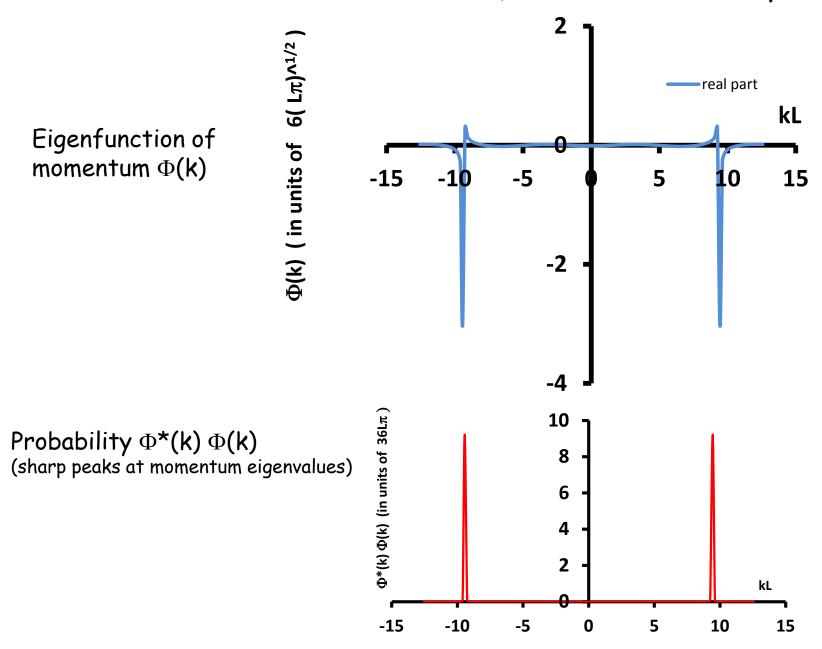
n	$\Psi_{n}(x)$	E _n	Levels
1	$\sqrt{\frac{2}{L}}\cos\left(\frac{\pi x}{L}\right)$	$h^2/8m_eL^2$	E ₁ =E _o
2	$\sqrt{\frac{2}{L}}\sin\left(\frac{2\pi x}{L}\right)$	$4h^2/8m_eL^2$	$E_2 = 4E_0$
3	$\sqrt{\frac{2}{L}}\cos\left(\frac{3\pi x}{L}\right)$	$9h^2/8m_eL^2$	E ₃ =9E _o
4	$\sqrt{\frac{2}{L}}\sin\left(\frac{4\pi x}{L}\right)$	$\frac{16h^2}{8m_eL^2}$	E ₄ =16E _o

Choose n=3 for the Infinite Square Well - calculate the momentum eigenfunction

$$\begin{split} \Phi_{3}(k) &= \frac{1}{\sqrt{2\pi}} \int_{-L/2}^{+L/2} \Psi_{3}(x) e^{-ikx} dx = \frac{1}{\sqrt{2\pi}} \int_{-L/2}^{+L/2} \Psi_{3}(x) e^{-ikx} dx \\ \Psi_{3}(x) &= \sqrt{\frac{2}{L}} \cos\left(\frac{3\pi x}{L}\right) \\ \Phi_{3}(k) &= \frac{1}{\sqrt{2\pi}} \sqrt{\frac{2}{L}} \int_{-L/2}^{+L/2} \cos\left(\frac{3\pi x}{L}\right) e^{-ikx} dx \\ &= 6\sqrt{L\pi} \left[\left(\frac{1}{[kL - 3\pi][kL + 3\pi]}\right) \cos\left(\frac{kL}{2}\right) \right] \end{split}$$

Note: math details included at end of Appendix

PLOTTING the RESULTS (n=3 for infinite square well)



The Math Details

$$\Phi_{3}(k) = \frac{1}{\sqrt{2\pi}} \int_{-L/2}^{+L/2} \Psi_{3}(x) e^{-ikx} dx = \frac{1}{\sqrt{2\pi}} \int_{-L/2}^{+L/2} \Psi_{3}(x) e^{-ikx} dx$$

$$\Psi_3(x) = \sqrt{\frac{2}{L}} \cos\left(\frac{3\pi x}{L}\right)$$

$$\Phi_3(k) = \frac{1}{\sqrt{2\pi}} \sqrt{\frac{2}{L}} \int_{-\frac{L}{2}}^{+\frac{L}{2}} \cos\left(\frac{3\pi x}{L}\right) e^{-ikx} dx$$

$$= \frac{1}{\sqrt{2\pi}} \sqrt{\frac{2}{L}} \left[e^{-ikx} \left(\frac{-\left(\frac{3\pi}{L}\right) \sin\left(\frac{3\pi}{L}x\right) + ik\cos\left(\frac{3\pi}{L}x\right)}{k^2 - \left(\frac{3\pi}{L}\right)^2} \right) \right]_{-\frac{L}{2}}^{\frac{1}{2}}$$

$$=\frac{1}{\sqrt{2\pi}}\sqrt{\frac{2}{L}}\left[e^{-ik\frac{L}{2}}\left(\frac{-\left(\frac{3\pi}{L}\right)\sin\left(\frac{3\pi}{L}\frac{L}{2}\right)+ik\cos\left(\frac{3\pi}{L}\frac{L}{2}\right)}{k^{2}-\left(\frac{3\pi}{L}\right)^{2}}\right)-e^{-ik(-L/2)}\left(\frac{-\left(\frac{3\pi}{L}\right)\sin\left(\frac{3\pi}{L}\left(-\frac{L}{2}\right)\right)+ik\cos\left(\frac{3\pi}{L}\left(-\frac{L}{2}\right)\right)}{k^{2}-\left(\frac{3\pi}{L}\right)^{2}}\right)\right]$$

$$\begin{split} &= \frac{1}{\sqrt{2\pi}} \sqrt{\frac{2}{L}} \left[e^{-ik\frac{L}{2}} \left(\frac{-\left(\frac{3\pi}{L}\right)(-1) + ik \times 0}{k^2 - \left(\frac{3\pi}{L}\right)^2} \right) - e^{+ik(L/2)} \left(\frac{-\left(\frac{3\pi}{L}\right)(1) + ik \times 0}{k^2 - \left(\frac{3\pi}{L}\right)^2} \right) \right] \\ &= \frac{1}{\sqrt{2\pi}} \sqrt{\frac{2}{L}} \left[e^{-ik\frac{L}{2}} \left(\frac{\left(\frac{3\pi}{L}\right)}{k^2 - \left(\frac{3\pi}{L}\right)^2} \right) + e^{+ik(L/2)} \left(\frac{\left(\frac{3\pi}{L}\right)}{k^2 - \left(\frac{3\pi}{L}\right)^2} \right) \right] \\ &= \frac{2}{\sqrt{L\pi}} \left[\left(\frac{\left(\frac{3\pi}{L}\right)}{k^2 - \left(\frac{3\pi}{L}\right)^2} \right) \cos\left(\frac{kL}{2}\right) \right] \\ &= \frac{2}{\sqrt{L\pi}} \left(\frac{3\pi}{L} \right) \left[\left(\frac{1}{\left[kL - 3\pi\right]\left[kL + 3\pi\right]} \right) \cos\left(\frac{kL}{2}\right) \right] \\ &= \frac{6\pi L}{\sqrt{L\pi}} \left[\left(\frac{1}{\left[kL - 3\pi\right]\left[kL + 3\pi\right]} \right) \cos\left(\frac{kL}{2}\right) \right] \\ &= 6\sqrt{L\pi} \left[\left(\frac{1}{\left[kL - 3\pi\right]\left[kL + 3\pi\right]} \right) \cos\left(\frac{kL}{2}\right) \right] \\ &= 6\sqrt{L\pi} \left[\left(\frac{1}{\left[kL - 3\pi\right]\left[kL + 3\pi\right]} \right) \cos\left(\frac{kL}{2}\right) \right] \end{split}$$