Modern Physics

Unit 5: Schrödinger’s Equation and the Hydrogen Atom
Lecture 5.1: Schrödinger’s Equation in 2 Dimensions

Ron Reifenberger
Professor of Physics
Purdue University
If we know the wavefunction, we know everything it is possible to know

For every dynamical system, there exists a wavefunction Ψ that is a continuous, square-integrable*, single-valued function of the coordinates of all the particles and of time. If you know Ψ, all possible predictions about the physical properties of the system can be obtained.

"The coordinates of all the particles"?

For a single particle in one dimension:

For $\Psi(x)$

For a single particle moving in one dimension:

For $\Psi(x,t)$

For a single particle in a superposition of two quantum states, a and b (state vector):

$\Psi(x,t) = A\Psi_a(x,t) + B\Psi_b(x,t)$

For a single particle moving in three dimensions:

For $\Psi(\vec{r},t)$

For two particles moving in three dimensions:

For $\Psi(\vec{r}_1,\vec{r}_2,t)$

*Square-integrable means that the normalization integral is finite
Real space vs. k-space

\[\Phi(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \Psi(x)e^{-ikx} \, dx \]

\[\Psi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \Phi(k)e^{ikx} \, dk \]

\[\Phi(k) \quad \text{or} \quad \text{wavevector space or reciprocal space or inverse space} \]

real space

k (m^{-1})

x (m)
A particle of mass m_e in a rigid 2-d square box

$$-\frac{\hbar^2}{2m_e} \left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + U(x, y) \right] \Psi = E \Psi$$

for $0 < x < L$ and $0 < y < L$, $U(x, y) = 0$

we then have

$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} = -\frac{2m_e}{\hbar^2} E \Psi$$

Suppose $\Psi(x, y) = X(x)Y(y)$ then,

$$\frac{\partial^2 \Psi}{\partial x^2} = Y(y) \frac{d^2 X(x)}{dx^2}$$

$$\frac{\partial^2 \Psi}{\partial y^2} = X(x) \frac{d^2 Y(y)}{dy^2}$$
\[
\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} = -\frac{2m_e}{\hbar^2} E \Psi \quad \text{now becomes}
\]
\[
Y(y) \frac{d^2 X(x)}{dx^2} + X(x) \frac{d^2 Y(y)}{dy^2} = \left[-\frac{2m_e}{\hbar^2} E \right] X(x)Y(y)
\]
\[
\frac{1}{X(x)} \frac{d^2 X(x)}{dx^2} + \frac{1}{Y(y)} \frac{d^2 Y(y)}{dy^2} = \left[-\frac{2m_e}{\hbar^2} E \right]
\]

This must be true for any \((x,y)\) such that 0<x<L and 0<y<L

This equation is of the form:

(function of x only) + (function of y only) = some constant

\[
\therefore \quad \frac{1}{X(x)} \frac{d^2 X(x)}{dx^2} = \text{constant}_1 = -k_x^2
\]

\[
\frac{1}{Y(y)} \frac{d^2 Y(y)}{dy^2} = \text{constant}_2 = -k_y^2
\]
I. Boundary Conditions

\[X(x = 0) = X(x = L) = 0 \]
\[Y(y = 0) = Y(y = L) = 0 \]

Try the solutions:

\[X(x) = A \sin(k_x x) \quad Y(y) = B \sin(k_y y) \]

To match boundary conditions:

\[k_x = \frac{n\pi}{L}; \quad n = 1, 2, 3... \quad k_y = \frac{m\pi}{L}; \quad m = 1, 2, 3... \]

II. Solution for Ψ

\[\Psi(x, y) = X(x)Y(y) \]
\[= AB \sin(k_x x) \sin(k_y y) \]
\[= AB \sin \left(\frac{n\pi x}{L} \right) \sin \left(\frac{m\pi y}{L} \right) \]
III. Allowed Energies

$$\frac{1}{X(x)} \frac{d^2 X(x)}{dx^2} + \frac{1}{Y(y)} \frac{d^2 Y(y)}{dy^2} = \left[-\frac{2m_e}{\hbar^2} E \right]$$

$$-\frac{n^2 \pi^2}{L^2} - \frac{m^2 \pi^2}{L^2} = -\frac{2m_e}{\hbar^2} E$$

$$E = \frac{\hbar^2}{2m_e} \cdot \frac{\pi^2}{L^2} \left[n^2 + m^2 \right] = E_o \left[n^2 + m^2 \right]$$

Systematically pick various n,m values to determine allowed energy levels. Note: Can’t choose either n or m =0. Why?

<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
<th>E</th>
<th>Degeneracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>$2E_o$</td>
<td>nondegenerate</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>$5E_o$</td>
<td>2-fold degenerate</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>$5E_o$</td>
<td>2-fold degenerate</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>$8E_o$</td>
<td>nondegenerate</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>$10E_o$</td>
<td>2-fold degenerate</td>
</tr>
</tbody>
</table>

Two different quantum states that happen to have the same energy!

A quantum state is called degenerate when there is more than one wave function for a given energy.
Plots of $\Psi^*\Psi$ for various energy eigenvalues

$$\Psi(x, y) = C \sin \frac{n\pi x}{L} \sin \frac{m\pi y}{L}$$

- $n=1; m=1; E=2E_0$
- $n=2; m=3; E=13E_0$
- $n=1; m=3; E=10E_0$
- $n=6; m=4; E=52E_0$
Plot of $\Psi^*\Psi$

$n=2; \ m=3$

3-dimensional

Top view – false color w. contours
What it means

filled vs. empty states in “k-space”

Each dot represents a quantum state

$E=0$

$E=2E_o$

$E=3E_o$

$E=4E_o$

$E=5E_o$

$E=6E_o$

$k_y = m\pi/L$

$k_x = n\pi/L$

k_{max}

π/L

$2\pi/L$

$3\pi/L$

$4\pi/L$

k

k_{max}

$k_y = m\pi/L$

$k_x = n\pi/L$
Checking the theory

- 18E₀
- 17E₀
- 13E₀
- 10E₀
- 8E₀
- 5E₀
- 2E₀
- E=0

Check against experiment

Assumes transitions radiate light

two clicks
2d Application: FinFET Concept and Implementation

On May 4, 2011, Intel announced what it called the most radical shift in semiconductor technology in 50 years.

New 3-dimensional transistor design will enable the production of integrated-circuit chips that operate faster with less power...

http://electroiq.com/chipworks_real_chips_blog/2012/04/

C. Auth, VLSI-T (2012)
Up Next - counting quantum states