
Getting Started with LTspice in ECE 25500

Rayane G. Chatrieux
Purdue University

Created: August 2019

Note : This tutorial is mainly geared towards Windows users and Linux users accessing LTspice
through Wine. If you are a MAC user, check out the links provided on the course web-page
(https://nanohub.org/groups/class ece255) to get started. The link to the installation executable
is the same for all of these OS.

Contents

1 Introduction 3

2 Installation 4

3 What are SPICE and LTspice? 5
3.1 Historical Context . 5
3.2 The SPICE Algorithm . 5
3.3 Device Models . 7
3.4 Netlists . 7
3.5 LTspice . 8

3.5.1 Device Parameter Models . 8

4 Creating a Circuit in the Schematic Editor 9
4.1 The Schematic Editor . 9

4.1.1 The Toolbar . 10
4.1.2 Manipulating the Canvas . 10

4.2 Placing Components . 10
4.2.1 Placing a Resistor, an Inductor or a Capacitor 10
4.2.2 Searching for a Component . 11
4.2.3 Voltage Reference (Ground) . 12
4.2.4 Moving Components Around . 12

4.3 Connecting Components . 12
4.4 Assigning Parameter Values . 13
4.5 Naming Components . 14
4.6 Labelling Nets . 15
4.7 Printing your Circuit . 16
4.8 Conclusion . 16

1

https://www.winehq.org/

5 Running Analyses 17
5.1 Overview . 17
5.2 DC Operating Point Analyses . 17

5.2.1 Setup . 17
5.2.2 Example . 18

5.3 DC Sweep Analyses . 18
5.3.1 Setup . 18
5.3.2 Example . 18

5.4 Transient Analyses . 19
5.4.1 Setup . 19
5.4.2 Example . 20

5.5 AC Analyses . 22
5.5.1 Setup . 22
5.5.2 Example . 23

5.6 Printing your Plots . 24

6 Using Simulator Directives 25
6.1 Overview . 25
6.2 Placing a Directive . 25
6.3 Specifying Initial Conditions (.IC) . 26

6.3.1 Description . 26
6.3.2 Setup . 26
6.3.3 Example . 26

6.4 Evaluating Electrical Quantities (.MEAS) . 27
6.4.1 Description . 27
6.4.2 Example . 27

6.5 Sweeping a Parameter (.STEP) . 28
6.5.1 Description . 28
6.5.2 Setup and Example . 28

6.6 Customizing a Component’s Parameters (.MODEL) 30
6.6.1 Description . 30
6.6.2 Setup . 30

6.7 Conclusion . 30

2

1 Introduction

One of the learning objectives of ECE 25500 is that the student needs to be able to use CAD
tools to analyze microelectronic circuits. There is a myriad of such tools allowing users to simulate
circuit behavior. SPICE, the tool of choice for this course, is by far one of the most popular and
simplest ones to use out there. Yet, you will most likely never need to go beyond its capabilities
for any of your hobbyist activities (industry is another story of course). SPICE by itself is usually
a simple command-line executable which reads inputs from files and completes its tasks without
much interaction with the user. In ECE 25500, we will use a SPICE package called LTspice,
which provides, among many other things, a graphical interface to SPICE and a waveform viewer.
Throughout the course, you will learn about using SPICE through LTspice.

See section 2 for installation instructions. In section 3, I provide a little bit of background on what
SPICE is and why it is such a popular CAD tool. In section 4, I show you how to build a circuit
in the LTspice schematic editor. In section 5, I list the different types of simulations you’ll need to
know about, and how to run them. In section 6, I introduce four very important SPICE directives
which you will need to successfully design your circuits in this course.

Note: (Side notes such as this one will be enclosed in a gray box) I try to improve the
quality of this tutorial every semester. Part of your first LTspice assignment is to read it in
its entirety and provide feedback. Please don’t hesitate to be as critical as you wish.

3

2 Installation

LTspice is a software package owned and maintained by Linear Technology, which is now part of
Analog Devices. You can get the installation executable from their website. Once the installation
completes and you have made sure that the program starts correctly, take a minute to look through
the installation directory. In particular, you’ll notice the presence of an examples and a lib folder.
In the examples folder, several circuit schematic examples are provided to you. In the lib folder,
LTspice stores, among others, model parameters, sub-circuit definitions, and schematic symbols for
all devices accessible to you out-of-the-box through the schematic editor. Of particular importance
are the library files contained in the directory lib/cmp, which define the model parameters of many
components. We’ll have more to say about these definitions later in this tutorial.

4

https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html

3 What are SPICE and LTspice?

Let me just quickly give you some information about what SPICE and LTspice are, how they work,
and how they are used. This information is arguably not relevant to ECE 25500. However, you
will need it later on as you learn to use more and more CAD tools and you are faced with the
inevitable question of which to use to solve your particular problems.

3.1 Historical Context

For several decades until the 1960s, prototyping circuits on a breadboard or a perf board was, for
the most part, sufficient to thoroughly test a circuit before mass production. In the late 1950s,
the planar process was invented, which led to a massive development of integrated circuit
(IC) technology. In fact, the IC quickly became the main form of implementation of digital logic
on a circuit. However, ICs could only be tested after they had been produced, a costly operation
even at the time. As a result, in the early days of the IC industry, companies had to spend
much more money on product development than they had to before. IC vendors started relying
more and more on software circuit simulation rather than physical testing to both speed up, and
reduce the cost of development. Unfortunately, this transition was operated for the most part
internally, with each vendor developing its own proprietary simulation software tool and using it
only for its own products. It is in this industrial context that SPICE is invented in 1973 at UC
Berkeley by Laurence Nagel. SPICE, which stands for Simulation Program with Integrated
Circuit Emphasis, is one of the first simulation tools distributed as a public domain software,
meaning that its source code was made freely available to anyone. Even in its early life, SPICE
had just enough analyses and models, robustness, flexibility and efficiency to become the most
popular circuit simulation software in industry. Most IC vendors of the time started to use the
SPICE source code as the backbone of their own customized software tool. To this day, CAD tools
still use the SPICE algorithm in derivative products such as HSPICE and PSPICE. For example,
Cadence Virtuoso, the leading IC design software in industry, uses a circuit simulation program
called Spectre, a derivative of SPICE.

3.2 The SPICE Algorithm

The algorithm on which SPICE runs is beautiful in its simplicity. A rough outline of the works
of the algorithm is shown in Fig.1 below. Here, SPICE is actually performing what is called a
transient analysis (more on this in section 5.4). This type of analysis seeks to simulate circuit
behavior over a period of time (real time). Notice the presence of two loops. The outer loop
simply continues until the the end of the simulation time is reached. For example, you may want
to simulate a circuit over 10 ms. SPICE will compute an appropriate time step and increment
the simulation time until 10 ms are reached. The inner loop does something far more interesting,
and is the bread and butter of SPICE. In essence, to simulate circuit behavior over time, SPICE
actually considers a sequence of snapshots of the circuit’s state. The outer loop, which increments
time, goes from one snapshot to the next. SPICE solves for the various circuit quantities (voltages
and currents) in a snapshot by solving a set of linear nodal equations (those same ones you saw
in ECE 20100) put into matrix form. In order to achieve high execution speeds, SPICE uses an
iterative approximate solution method to solve these matrix equations. That is, instead of finding
an exact solution to all circuit parameters, SPICE computes these in a sequence of approximate
solutions in the hope that this sequence converges to the exact solution. Although this method is
incredibly efficient, it is possible for a solution to not converge (usually when the circuit contains

5

discontinuous waveforms or high impedance nodes). However, these convergence issues will not
have to be dealt with in ECE 25500.

1: Initial op-
erating point

2: Create linear
companion models for
non-linear components

3: Form a nodal
analysis equation in
matrix form using
conductances G

4: Solve the linear
nodal equations

5: Converged?

7: Go to next
time step

8: End of time?

6: Compute new
operating point

No

No

Yes

Yes

Fig.1 - The SPICE Algorithm

6

3.3 Device Models

SPICE is shipped with models for several common devices, such as diodes and MOSFETs. These
models are actually the parametrized equations that govern the operation of the device (e.g. the
i-v characteristic of a resistor). These equations are specific enough that one can quickly simulate
circuits. However, they are general enough that one can customize the equations to better approxi-
mate a certain device. This customization is possible through the device parameters. For example,
you do not need to tell SPICE what a resistor is, but you do need to specify its resistance. We
will call the equations SPICE stores internally Device Models, and we will call the customizable
quantities in these equations Parameters. In ECE 25500 (and in your entire career most likely
unless you choose to go into devices), you will only ever need to specify parameters to a device.

Note: It is, of course, possible to define your own device. This requires you to expand
the source code of SPICE (efficiency is key!). This is not such a costly or difficult task for
companies, since the entirety of the SPICE source code is available to the public. In fact,
this ability to expand the source code to fit one’s needs is one of the reasons behind SPICE’s
popularity.

3.4 Netlists

Originally, SPICE was just a command-line executable that ran on pre-defined input circuits. That
is, the circuit needs to have been defined and completely specified in some way before SPICE is
run. Similar to how most computer programs take their inputs, the circuit is defined in a file. That
file is referred to as a circuit netlist, and could look something like Fig.2. Roughly speaking, each
line in the netlist describes one component of the circuit; that is, its type (e.g. a resistor), its name,
its connectivity (the name of the nodes it connects to), and its parameters (e.g. resistance). Other
lines, those which start with a period, are what are called directives (see section 6). Their purposes
are various. In general, these statements serve the purpose of controlling SPICE’s behavior on the
circuit before, during and after a simulation is run. In the last section of this tutorial, we’ll have a
look at some useful directives.

Fig.2 - An Example Netlist Obtained from LTspice

Netlists are still used to describe circuits today. However, it has become less and less necessary to
have to write them yourself. Early on, companies introduced the schematic editor, which is a
graphical interface to circuit netlist generation. With a schematic editor, one can place and connect
components using a mouse, and can visualize the created circuit on the screen directly. The netlist

7

is then generated in the background before a simulation is run. In section 4, I show you how to use
the schematic editor provided by LTspice.

3.5 LTspice

You can think of LTspice as a wrapper for SPICE. LTspice, through its schematic editor, gives
you a way of creating circuits graphically. LTspice provides numerous graphical control panels to
customize circuit components. LTspice provides a waveform viewer, which is certainly the most
natural way of visualizing simulation results. In general, LTspice makes using SPICE a much easier
and accessible task.

3.5.1 Device Parameter Models

There is one more very important thing LTspice provides us with. That is, a library of device
parameter models. I mentioned in section 3.3 that SPICE stores device models internally, and all
that you have to do as the user is specify the values of specific parameters. However, specifying a list
of parameters for a device is actually not so easy most of the time. For example, modern MOSFET
models contain about 200 customizable parameters, most of which are empirical in nature, un-
intuitive, and one should really not have to bother with them. Fortunately, LTspice already has
a bank of pre-defined device parameter models, which are simply lists of parameter values which,
together, approximate the behavior of some realistic device. In industry, it is actually the device
manufacturer (e.g. TSMC) that provides these device parameter models to its clients.

8

4 Creating a Circuit in the Schematic Editor

To start with, let’s look at how to use the schematic editor to create circuit netlists. I’ll cover how
to place components, create connections between components, name components, label nets, and
assign parameter values to components. I will do this by creating the circuit shown in Fig.3 as an
example.

−
+Vin

R

C L

in out

Fig.3 - Example Circuit.

4.1 The Schematic Editor

The first thing to do after launching LTspice is to start a new schematic by clicking on New
Schematic in the toolbar. The schematic editor window appears (see Fig.4). This blank
canvas is where you’ll place components and directives to define a circuit. As you can see in Fig.4,
a grid should be visible. If it is not, go to View and make sure Show Grid is checked. This grid
facilitates the process of placing and connecting components together.

Fig.4

9

4.1.1 The Toolbar

When you clicked on New Schematic and the schematic editor appeared, you should have noticed
the toolbar that is now at the top of the window. We will be using commands from this toolbar
frequently.

4.1.2 Manipulating the Canvas

To move the canvas around, left click any point on the grid to grab the canvas, and drag (keeping
the mouse button pressed) the cursor in any direction. The canvas will follow the cursor. You can
also zoom in and out of the canvas using the mouse scroll. In the toolbar, you have some other
zooming options. The Zoom Full Extents command recenters and resizes the canvas such that
every placed component is visible. This is quite useful for large schematics.

4.2 Placing Components

We now start creating the circuit. Refer back to Fig.3. This process evidently begins with placing
the required components.

4.2.1 Placing a Resistor, an Inductor or a Capacitor

Let’s start with the capacitor. You first select the capacitor by clicking on Capacitor in the toolbar
(alternatively, press C on you keyboard). Once selected, you can place instances of capacitors on
the canvas (as many as you want). Now, click on Inductor (or press L on your keyboard) and
place the inductor on the canvas to the right of the capacitor. Finally, click Resistor (or press R
on your keyboard) to place the resistor. Before placing the resistor, press Ctrl + R to rotate the
symbol. By now, you’ll have something that looks like Fig.5.

Note: LTspice automatically assigns names to the components you place on the canvas.
Once you have placed the RLC components, have a look at the generated netlist (click on
View → SPICE Netlist).

10

Fig.5

4.2.2 Searching for a Component

Components such as resistors, capacitors and inductors are common enough that they have their
own dedicated icons in the toolbar. Most components available in LTspice however, do not. Instead
we must manually search for them. Voltage sources are an example of such a component, as there is
no icon dedicated to them. We must look for it in components library. Left click on Components
(in the toolbar). In the search bar, start typing in voltage and click Ok once you have found the
component. You should have the circuit shown in Fig.6.

Note: The voltage source in LTspice represents a generic voltage source that can be set
to output several types of waveforms, including DC, sinusoidal waveforms, pulse waveforms,
and arbitrary waveforms (this requires a setup file though). In ECE 25500, we will be only
interested in DC and sinusoidal input waveforms.

11

Fig.6

4.2.3 Voltage Reference (Ground)

The last component that is missing from our circuit is the voltage reference. Left click on the
Ground icon (or press G on your keyboard). Place three references below the source, the capacitor
and the inductor.

Note: Any circuit you create in LTspice must contain a voltage reference. SPICE assigns
the voltage at this node to be 0, and solves for the other nodal voltages relative to the
reference.

4.2.4 Moving Components Around

Once the components are placed on the canvas, you still have the ability to change their position
or even rotate them. Left click on the Drag icon in the toolbar, and left click on a component you
want to re-position. You can now move the component around. You can also rotate it by clicking
on Rotate while the component is selected, or by pressing Ctrl + R on your keyboard. Finally,
you can mirror components across the vertical by clicking on Mirror, or by pressing Ctrl + E,
while the component is selected. Although rotating and mirroring a component has, of course, no
effect on circuit behavior, it allows for clean and readable circuits, and most importantly, it allows
us to clearly see the connections.

4.3 Connecting Components

To electrically connect the circuit components together, left click on the wire icon. Alternatively,
you can press F3. Once you have connected all of the components together, you should have the

12

circuit shown in Fig.7. Have another look at the produced netlist, and note that the electrical
connections have indeed been made.

Fig.7

4.4 Assigning Parameter Values

We now assign parameter values to the placed components. By parameters, I mean voltage, resis-
tance, capacitance and inductance in this case. The easy way to do this in LTspice is to simply
right click on a component. For example, right click on the resistor. The window shown in Fig.8
appears. In this window, LTspice has extracted for us the three most important parameters con-
cerning resistors (although we’ll only care about resistance in ECE 25500), and provided us with
a simple way of assigning values to these. In the Resistance field, enter 1e3. LTspice will under-
stand this value to mean 1× 103 Ω. Leave the other two fields blank. Let’s assign a value of 1 µF
to the capacitor. Again, right click on the capacitor symbol on your schematic and enter 1e-6 in
the Capacitance field. Finally, enter 1e-3 for the inductor. Once that’s done, your circuit will
look like that shown in Fig.9.

Note: Assigning parameter values to the voltage source is dependent on the type of analysis
we want to run. I’ll explain how to setup the source in section 5 on running analyses.

13

Fig.8

Fig.9

4.5 Naming Components

Assigning meaningful names to the components in your circuit has many advantages. One is that
it makes the writing of simulator directives (see section 6) easier. Another is that you’ll have a
slightly easier time reading your circuit netlist in the event that you have to. Names are attached to
one single instance of a component. As pointed out before, LTspice automatically assigned names
to the components you placed. For example, LTspice named my resistor R1 in Fig.9 above. To
change the name, right click on the name (not the component this time, but the name).

14

Fig.10

Note on naming and assigning values: To name our components and assign parameter
values, we have used the GUI LTspice has provided us, which we access by right clicking on
the components and the names. Later in the semester, you may need to access to parameters
that aren’t made available by LTspice through those GUIs. Instead of simply right clicking,
you’ll need to press Ctrl and then right click. This opens the more general Component
Attribute Editor for that component. I’ll discuss what you’ll need to do then in later
assignments.

4.6 Labelling Nets

Labelling nets with meaningful names is extremely important when creating circuit schematics.
One reason is that, once again, the simulator directives will be easier to write, and the netlists
easier to read. However, that is not all. Appropriately naming nets allows you to understand
simulation results better. Finally, and probably most importantly, two nets bearing the same name
are electrically connected, whether or not the connection is made visually or not. In Fig.11 below,
the voltage source is indeed connected to the rest of the circuit. To add a net name, all you need
to do is click on Label Net in the toolbar. In the text box, type in the name you want, and then
attach it to the nodes you want.

15

Fig.11

4.7 Printing your Circuit

If you every need to capture an image of your circuit within LTspice (for a report for example),
you need to print your circuit to a PDF document first. This is done by clicking File → Print.

4.8 Conclusion

This is as far as I’ll for now regarding creating circuits in the schematic editor. I hope that you
know enough by now to be comfortable with LTspice’s schematic editor. I encourage you to have
another look at the netlist produced by LTspice before you move on, and to try to fully understand
how the netlist translates to the circuit. The ability to read a netlist is a much more transferable
skill than the ability to use LTspice’s schematic editor.

16

5 Running Analyses

5.1 Overview

There are several analysis SPICE can run. Here, I describe the four most common ones that you’ll
need to know about this semester.

5.2 DC Operating Point Analyses

The DC Operating Point is the most basic analysis type provided by SPICE. Its purpose is compute
the DC operating point of each component in your circuit (you’ll understand what this means during
your lectures on diodes and transistors). You can understand this to mean the combination of DC
voltages and currents at each node and through each branch of the circuit that determine its AC
behavior. When no AC signal is present, the analysis result represent the exact circuit solution.

5.2.1 Setup

The DC Operating Point analysis requires you to setup the voltage and current sources in your
circuit. To do so, right click on the source. The GUI that appears allows you to quickly specify a
DC voltage or current. Once you are ready to simulate, click on Simulate → Edit Simulation
Cmd. In the Edit Simulation Command window that appears, select the DC op pnt tab (see
Fig.12). Then, you simply click Ok and place the .op command anywhere on the schematic. Your
circuit is ready to be simulated.

Note: During DC operating point analyses, SPICE treats capacitors as open circuits, and
inductors as short circuits.

Fig.12

17

5.2.2 Example

In Fig.13, I have an example of the results from a DC operating point analysis. Notice the
importance of labelling nodes to read the results here. As expected, V(out), the voltage at node
out, is 5 V.

Fig.13

5.3 DC Sweep Analyses

DC sweep analyses are mostly used to compute the DC characteristics of circuits. It allows you to
compute the DC operating point of a circuit while stepping independent sources, and while treating
capacitors as open circuits and inductors as closed circuits.

5.3.1 Setup

Since the DC sweep analysis can only sweep independent sources, there needs to be at least one
voltage or current source in your circuit. Take note of their names. Then, click on Simulation →
Edit Simulation Cmd. Click on the tab named DC Sweep. You can sweep up to three sources.
In the Name of source to sweep field, enter the name of the source you want to sweep. You then
have the choice of sweeping linearly or logarithmically (list allows you to specify a list of value to
step through. It isn’t so useful).

5.3.2 Example

For this example, I’ve taken a simple rectifier circuit. You’ll know what those are in just a few
lectures. The DC sweep analysis will allow us to determine the DC characteristic of this circuit.
See Fig.14 for the simulation results. See Fig.15 for the setup of the analysis.

18

Fig.14

Fig.15

5.4 Transient Analyses

Transient analyses allow you to simulate circuit behavior over time. For this type of analysis, the
dynamic relationships governing each components in your circuit are considered (e.g. capacitors
are not open circuited).

5.4.1 Setup

To setup a transient analysis, you need to setup the sources. A typical example in ECE 25500 is
to setup a source to output a sinusoidal waveform. Right click on a voltage source, and click on
Advanced. You should have the window shown in Fig.16 below. Out the available waveforms,

19

select SINE. In ECE 25500, we’ll ignore the last four fields, and only care about DC offset,
amplitude and frequency. To setup the actual analysis, open up the Edit Simulation Cmd
window and click on the Transient tab. Usually, specifying the Stop Time is the only thing
you’ll have to do.

Fig.16

5.4.2 Example

I’ve taken the rectifier circuit from the DC sweep analysis example and specified an input sine wave
of amplitude 2 V and frequency 1 kHz. The source setup is shown in Fig.17 below. I’ve then setup
the simulation stop time at 5 ms (see Fig.18). The simulation results are shown in Fig.19. I’ve
plotted both the input and output in the results.

20

Fig.17

Fig.18

21

Fig.19

5.5 AC Analyses

The AC analysis is used to compute the transfer function of a circuit; that is, the circuit gain and
phase response versus frequency.

5.5.1 Setup

For this type of analysis, the independent sources have a special setup as well. Right click on your
voltage source, and then click on Advanced. In the window that appears, you need to specify the
Small Signal AC Analysis section (see Fig.20 below). For all circuits in ECE 25500, the AC
Amplitude field should be 1, and the Phase field should be 0 (these will be otherwise only when
you have more than one source is your circuit). To setup the actual analysis, once again open up
the Edit Simulation Cmd window and select the AC Analysis tab. The setup is similar to the
DC sweep setup. We will prefer a logarithmic (decade) sweep for most applications.

22

Fig.20

5.5.2 Example

I’ve taken the filter we build in section 4 and ran an AC analysis on it. The analysis setup is shown
in Fig.21 below. The simulation results are shown in Fig.22. Notice that both the phase and
magnitude responses are plotted on the waveform viewer. You can remove the phase plot by right
clicking on the phase axis and clicking on Don’t plot phase.

Fig.21

23

Fig.22

5.6 Printing your Plots

If you ever need to capture your plots, you’ll need to print them. This is imperative! Taking a
screen-shot of your plot on the black background will not be accepted. Firstly, remove the grid by
right clicking somewhere on the plot background, and then going to View → Grid. Then, click
on File → Print.

24

6 Using Simulator Directives

6.1 Overview

As we have discussed in the background section, a circuit netlist consists of two main entities.
One is a component description, which, in one line, tells SPICE what component is instantiated,
what name it bears, where it connects, and what the values of its parameters are. For example,
in a previous circuit, we had placed an inductor. The corresponding line on the netlist looked
like the following: L1 out 0 1e-3, where L indicates that the component is an inductor, out 0

indicates that the inductor connects from node out to the reference node, and 1e-3 is the value
of the inductance. The other entities that we find in netlists are simulator directives, or dot
commands. These control the behavior of the simulator at run-time. For example, SPICE is told
which type of analysis to run, along with how to set it up, through a directive. The following
directive sets up an AC analysis: .ac dec 20 1 1e6, where the gain is computed between 1 Hz
and 1 MHz at 20 points per decade. Beyond selecting an analysis type, directives are used for many
other desirable behaviors such as specifying initial conditions (e.g. charge of a capacitor), analyzing
the results of a simulation run, stepping a parameter or customizing a component’s model. These
are just a few of the supported directives. However, they are certainly some of the most common
ones. Below, I describe in moderate detail the purpose and use of these directives I have just listed.

6.2 Placing a Directive

To place a simulator directive, click on SPICE Directive in the toolbar (the .op icon). A text
box will appear on which you can type a directive. Once you have pressed Ok, you need only
place it anywhere on the canvas. LTspice provided a convenient GUI to edit most of the available
directives. In order to access it, you simply need to right click on the placed directive. For example,
the GUI for a .meas directive will look like Fig.23.

Fig.23

25

Note: Some simulator directives, such as the .meas directive, have complex syntax and are
highly flexible. It is impossible to encompass the whole of their versatility in just a few lines
of description. We can, however, describe the syntax of directive with something like this:

.ic [V(<n1>)=<voltage>] [I(<inductor>)=<current>]

In this notation, the square brackets indicate optional arguments, meaning that what is
inside the brackets need to be included in the directive statement for it to be syntactically
correct. The angled brackets indicate a parameter that needs to be populated. For example,
in the above directive, if we wanted to initialize the voltage at node X to 1 V, we would
write:

.ic V(X)=1

See below for a more detailed description of the .ic directive.

6.3 Specifying Initial Conditions (.IC)

6.3.1 Description

The .ic directive is used to initialize node voltages and branch currents before a transient analysis
is run. Although SPICE will interpret the .ic directive in a specific way for a DC analysis, I
encourage you to only use it for transient analyses.

6.3.2 Setup

The general syntax of the .ic directive is as follows:

.ic [V(<n1>)=<voltage>] [I(<inductor>)=<current>]

Here, for example, V(<n1>) refers to the voltage at some unspecified node <n1>. Node voltages
and branch currents have to be specified one by one (more than one of each can be specified in one
directive).

6.3.3 Example

As an example of the .ic directive, consider the discharging capacitor shown in Fig.24 below. We
can examine the rate of discharge over a period of 5 ms using a transient analysis. To specify an
initial charge on the capacitor, I have named the node above x. Then, the required directive is
simply .ic V(x)=1.

26

Fig.24

6.4 Evaluating Electrical Quantities (.MEAS)

6.4.1 Description

The .meas directive is an extremely versatile directive. It essentially allows you make measurements
on the result of a simulation, such as computing the peak value of a waveform, finding out when
a rising voltage reaches a particular value, calculating RMS currents, and much more. Click on
Help → Help Topics and read the help page on the .meas directive to learn about how it is setup
(you’ll see that there is too much to describe here). Instead, I’ll give one example of it in action.

6.4.2 Example

In this course, there will be many instances in which you will have to compute averages of a
waveform. The .meas is the directive you are expected to use for that purpose. Consider the half-
wave rectifier circuit shown in Fig.25 below. This is a circuit you’ll see again later. The source is
a sine wave of amplitude 10 V and frequency 1 kHz. I have plotted the voltage waveform at node
out. We can easily compute the average output voltage using the .meas directive shown in the
figure.

Note: The simplest way to setup a .meas directive is to use the built-in GUI. Refer to
section 6.2.

27

Fig.25

6.5 Sweeping a Parameter (.STEP)

6.5.1 Description

The .step directive allows you to repeat an analysis several times for several values of a particular
parameter. This is useful when you want to figure out how your circuit’s behavior changes as you
increment a parameter, such as the resistance of some resistor. In essence, this directive automates
the process of incrementing a parameter and running the analysis over a defined range. The DC
sweep analysis we have discussed earlier is actually a .step directive in disguise, for which the
parameter LTspice increments is the source voltage.

6.5.2 Setup and Example

As with most other popular directives, click on SPICE Directives in the toolbar, type .step in
the text box, press Ok, and place the directive somewhere on your schematic. Then, right click
on the directive to edit its syntax using the LTspice GUI for it (see Fig.26 below). In the Name
of parameter to sweep field, you should enter the name of whatever parameter you want to
sweep. However, this name is not the name of a component. Instead, it is a name you have define
yourself in the Value field of a component’s attribute editor. For example, if I wanted to sweep the
resistance of a resistor, instead of entering an absolute resistance for the value of a resistor, I enter
{R} (see Fig.27 below). This defines the parameter R, which can be swept by a .step directive.
Looking again at Fig., I have entered R in Name of parameter to sweep.

28

Fig.26

Fig.27

After the parameter name is defined, we can specify the type of sweep. The LTspice GUI for the
.step directive should be rather intuitive to use. As example, I created a voltage divider and ran
a DC analysis while sweeping the load resistance as shown back in Fig.26 above. The result is
shown in Fig.28.

Fig.28

29

6.6 Customizing a Component’s Parameters (.MODEL)

6.6.1 Description

As I have discussed in section 3.3, SPICE ships with device models. The user needs only to specify
the device parameter model of a device for it to function. For most circuits you’ll be creating in
LTspice, the device parameter models LTspcie provides will be sufficient. However, towards the
end of the semester, we will need to create our own. This is what we will use the .model directive
for. I’ll describe exactly how you’ll need to use it then.

6.6.2 Setup

The syntax of the .model directive is .model <model name> <type>[(<parameter list>)]. Here,
you specify the name of new model, the type of model (as in, which device is being given parameters
here), and the list of parameters.

6.7 Conclusion

The idea behind this section on SPICE directives is to provide quick examples on how they are
usually used. The information is not exhaustive. To learn more about how to use the directives,
in LTspice, click on Help → Help Topics.

30

	Introduction
	Installation
	What are SPICE and LTspice?
	Historical Context
	The SPICE Algorithm
	Device Models
	Netlists
	LTspice
	Device Parameter Models

	Creating a Circuit in the Schematic Editor
	The Schematic Editor
	The Toolbar
	Manipulating the Canvas

	Placing Components
	Placing a Resistor, an Inductor or a Capacitor
	Searching for a Component
	Voltage Reference (Ground)
	Moving Components Around

	Connecting Components
	Assigning Parameter Values
	Naming Components
	Labelling Nets
	Printing your Circuit
	Conclusion

	Running Analyses
	Overview
	DC Operating Point Analyses
	Setup
	Example

	DC Sweep Analyses
	Setup
	Example

	Transient Analyses
	Setup
	Example

	AC Analyses
	Setup
	Example

	Printing your Plots

	Using Simulator Directives
	Overview
	Placing a Directive
	Specifying Initial Conditions (.IC)
	Description
	Setup
	Example

	Evaluating Electrical Quantities (.MEAS)
	Description
	Example

	Sweeping a Parameter (.STEP)
	Description
	Setup and Example

	Customizing a Component's Parameters (.MODEL)
	Description
	Setup

	Conclusion

