ECE-255
 Exam II
 March 5, 2019

Name: $\underset{\text { (Please print clearly) }}{\text { For Discussion in Class }}$
Student ID: \qquad

Division 1 (TuTh):
 \qquad
 Division 2 (MWF):

\qquad

INSTRUCTIONS

- This is a closed book, closed notes exam. Only the Texas Instruments TI30X IIS scientific calculator is allowed.
- Carefully mark your multiple-choice answers on the scantron form. If you need to change an answer on the scantron form, erase previous answer completely. Work on multiple-choice problems and marked answers in the test booklet will not be graded. Nothing is to be on the seat beside you.
- When the exam ends, all writing is to stop. This is not negotiable. No writing while turning in the exam/scantron or risk an F in the exam.
- All students are expected to abide by the customary ethical standards of the university, i.e., your answers must reflect only your own knowledge and reasoning ability. As a reminder, at the very minimum, cheating will result in a zero on the exam and possibly an F in the course. All incidents will be reported to the Dean of Students.
- Communicating with any of your classmates, in any language, by any means, for any reason, at any time between the official start of the exam and the official end of the exam is grounds for immediate rejection from the exam site and loss of all credit for this exercise. All incidents will be reported to the Dean of Students.

Problems Q1-Q10 consider BJTs and related circuits.
Q1. A transistor is biased in the active region so that $\alpha=0.95$ and $g_{m}=38 \mathrm{mS}$. What is the value of r_{π} ?
(1) $0.5 \mathrm{k} \Omega$
(2) $1.0 \mathrm{k} \Omega$
(3) $1.5 \mathrm{k} \Omega$
(4) $2.0 \mathrm{k} \Omega$
(5) $2.5 \mathrm{k} \Omega$
(6) $3.0 \mathrm{k} \Omega$
(7) $3.5 \mathrm{k} \Omega$

Q2. For the circuit below, the current through the $500 \mathrm{k} \Omega$ resistor is 0.037 mA . Determine the small signal transconductance. Assume $\beta=20$, $V_{B E}=0.7 \mathrm{~V}$, and $V_{T}=0.026 \mathrm{~V}$.
(1) 10.2 mS
(2) 17.3 mS
(3) 28.5 mS
(4) 37.3 mS
(5) 0 mS
(6) 38.9 mS (7) 43.2 mS

Q3. For the circuit below, $\mathbf{I}_{\mathbf{R} 1}=10 \mathbf{I}_{\mathbf{B}}$. Choose R_{1} so that $I_{C}=1 \mathrm{~mA}$. Assume $\beta=100$ $V_{B E}=0.7 \mathrm{~V}$, and $V_{T}=0.026 \mathrm{~V}$. Note that you can solve this problem without knowing \mathbf{R}_{2}.
(1) 0 k
(2) 25 k
(3) 50 k
(4) 75 k
(5) 100 k
(6) 125 k
(7) 150 k

Q4. For the circuit considered in Q3, suppose that the value of β increases by $2 x$. Which of the following best describes the change in DC bias conditions? You should assume that the transistor remains in (forward) active mode.
(1) I_{B} decreases by $\sim 2 \mathrm{x}$, and I_{C} decreases by $\sim 2 \mathrm{x}$.
(2) I_{B} decreases by $\sim 2 \mathrm{x}$, and I_{C} remains \sim constant.
(3) I_{B} decreases by $\sim 2 x$, and I_{C} increases by $\sim 2 x$.
(4) I_{B} increases by $\sim 2 \mathrm{x}$, and I_{C} decreases by $\sim 2 \mathrm{x}$.
(5) I_{B} increases by $\sim 2 \mathrm{x}$, and I_{C} remains \sim constant.
(6) I_{B} increases by $\sim 2 \mathrm{x}$, and I_{C} increases by $\sim 2 \mathrm{x}$.
(7) I_{B} remains \sim constant and I_{C} increases by $\sim 2 \mathrm{x}$.

Q5. For the circuit below, select the proper small signal equivalent circuit.

Problems Q6-Q9 consider the circuit below, which has a transistor with $\boldsymbol{\beta}=200$ and $\mathbf{V}_{\mathrm{BE}}=$ 0.6 V. The circuit is biased so that $\mathbf{I}_{\mathbf{C}}=\mathbf{1 . 0 5} \mathbf{~ m A}$. For this transistor, $g_{m}=40.4 \mathbf{~ m S}$, $r_{\pi}=5 \mathrm{k} \Omega$, and $r_{o}=\infty \Omega$.

Q6. What kind of amplifier is this?
(1) Common source
(2) Common emitter
(3) Common gate
(4) Common base
(5) Common drain
(6) Common collector
(7) Cascode

Q7. For the circuit above, what is the voltage gain, $A_{v_{i}}=v_{o} / v_{i}$. You may assume that the capacitors are short circuits at the signal frequency. As shown in figure, v_{i} is to the right of \mathbf{C}_{1}.
(1) +12
(2) -67
(3) +67
(4) -202
(5) +202
(6) -401
(7) +401

Q8-Q9 use same circuit as Q6-Q7 (repeated below); $g_{m}=40.4 \mathrm{mS}, r_{\pi}=5 \mathrm{k} \Omega, r_{o}=\infty \Omega$).

Q8. What is the input resistance, $R_{i n}$, at the indicated position?
(1) $25 \mathrm{k} \Omega$
(2) $20 \mathrm{k} \Omega$
(3) $5 \mathrm{k} \Omega$
(4) $4 \mathrm{k} \Omega$
(5) $3 \mathrm{k} \Omega$
(6) $2 \mathrm{k} \Omega$
(7) $1 \mathrm{k} \Omega$

Q9. If the capacitor, C_{3} (lower right) is removed, approximately what is the magnitude of the new input resistance of the circuit?
(1) $5 \mathrm{k} \Omega$
(2) $10.2 \mathrm{k} \Omega$
(3) $19.6 \mathrm{k} \Omega$
(4) $22.3 \mathrm{k} \Omega$
(5) $100 \mathrm{k} \Omega$
(6) $1000 \mathrm{k} \Omega$
(7) $1200 \mathrm{k} \Omega$

\qquad

Q10. For the circuit below, what is the small signal input resistance, $R_{i n}$, at the indicated location?
(1) $R_{i n}=r_{\pi 1}+r_{\pi 2}$
(2) $R_{i n}=r_{\pi 1}+(\beta+1) r_{\pi 2}$
(3) $R_{i n}=R_{1} \| R_{2}$
(4) $R_{i n}=\left(R_{1} \| R_{2}\right)+r_{\pi 1}+r_{\pi 2}$
(5) $R_{i n}=\left(R_{1} \| R_{2}\right)+r_{\pi 1}+(\beta+1) r_{\pi 2}$
(6) $R_{i n}=\left(R_{1} \| R_{2}\right)\left\|r_{\pi 1}\right\| r_{\pi 2}$

(7) $R_{i n}=\left(R_{1} \| R_{2}\right) \|\left(r_{\pi 1}+(\beta+1) r_{\pi 2}\right)$

Problems Q11-Q19 consider MOSFETs and related circuits.
Q11-Q12 refer to the DC MOSFET circuit shown in the figure. The MOSFET has $V_{T n}=$ 1 V and $\lambda=0$. The MOSFET operates in the saturation region and is biased at $\mathrm{V}_{\mathrm{GS}}=3 \mathrm{~V}$ and drain current $\left(I_{D}\right)=1 \mathbf{m A}$.

Q11. What is the maximum value of R_{D} for which the transistor operates in saturation?
(1) $0.7 \mathrm{k} \Omega$
(2) $0.8 \mathrm{k} \Omega$
(3) $1.2 \mathrm{k} \Omega$
(4) $2 \mathrm{k} \Omega$
(5) $6 \mathrm{k} \Omega$
(6) $7 \mathrm{k} \Omega$
(7) $8 \mathrm{k} \Omega$

Q11-Q12 refer to the DC MOSFET circuit shown in the figure. The MOSFET has $\mathrm{V}_{\mathrm{Tn}}=$ 1 V and $\lambda=0$. The MOSFET operates in the saturation region and is biased at $\mathrm{V}_{\mathrm{GS}}=\mathbf{3 V}$ and drain current $\left(I_{D}\right)=1 \mathbf{m A}$.

Q12. The electron mobility $\left(\mu_{\mathrm{n}}\right)$ is $1000 \mathrm{~cm}^{2} / V \mathrm{sec}$ and the W / L ratio is 5 . What is the oxide capacitance per unit area (in nanofarads $/ \mathrm{cm}^{2}$)?
(1) 1
(2) 3
(3) 5
(4) 10
(5) 25
(6) 50
(7) 100

Q13. Consider an enhancement-mode PMOS transistor with $\left|V_{T p}\right|=0.25 V$. Which one of the following combination of voltages yields operation in the saturation region?
(1) $\mathrm{V}_{1}=-1 \mathrm{~V}, \mathrm{~V}_{3}=-3 \mathrm{~V}$
(2) $\mathrm{V}_{1}=-1 \mathrm{~V}, \mathrm{~V}_{3}=0 \mathrm{~V}$
(3) $\mathrm{V}_{1}=-1 \mathrm{~V}, \mathrm{~V}_{3}=+3 \mathrm{~V}$
(4) $\mathrm{V}_{1}=+1.5 \mathrm{~V}, \mathrm{~V}_{3}=+0.5 \mathrm{~V}$
(5) $\mathrm{V}_{1}=+1 \mathrm{~V}, \mathrm{~V}_{3}=-3 \mathrm{~V}$
(6) $\mathrm{V}_{1}=+1 \mathrm{~V}, \mathrm{~V}_{3}=+3 \mathrm{~V}$
(7) $\mathrm{V}_{1}=+3 \mathrm{~V}, \mathrm{~V}_{3}=+2 \mathrm{~V}$

Q14.Consider the MOSFET bias circuit shown in the figure. Suppose that we wish to achieve a bias point in saturation with $I_{D}=2 \mathrm{~mA}$. What value of R_{S} is required?
(1) $0.25 \mathrm{k} \Omega$
(2) $0.5 \mathrm{k} \Omega$
(3) $1.0 \mathrm{k} \Omega$
(4) $1.5 \mathrm{k} \Omega$
(5) $2.0 \mathrm{k} \Omega$
(6) $3.0 \mathrm{k} \Omega$
(7) $5.0 \mathrm{k} \Omega$

Q15 and Q16 consider an NMOS transistor with $k_{n}=1 \mathrm{~mA} / V^{2}$ and $\lambda=0$. The transistor is operated at $I_{D}=2 \mathrm{~mA}$. You are asked to find the parameters in the hybrid- $\boldsymbol{\pi}$ model.

Q15. What is the value of the transconductance?
(1) 0 mS
(2) 0.05 mS
(3) 0.1 mS
(4) 0.2 mS
(5) 0.5 mS
(6) 1 mS
(7) 2 mS

Q15 and Q16 consider an NMOS transistor with $k_{n}=1 \mathrm{~mA} / V^{2}$ and $\lambda=0$. The transistor is operated at $I_{D}=2 \mathrm{~mA}$. You are asked to find the parameters in the hybrid- $\boldsymbol{\pi}$ model.

Q16. Now assume $\lambda=0.02$. What is the value of r_{0} ?
(1) $1 \mathrm{k} \Omega$
(2) $5 \mathrm{k} \Omega$
(3) $12.5 \mathrm{k} \Omega$
(4) $25 \mathrm{k} \Omega$
(5) $50 \mathrm{k} \Omega$
(6) $100 \mathrm{k} \Omega$
(7) $200 \mathrm{k} \Omega$

Q17. Consider the MOSFET circuit shown below. The MOSFET operates in saturation regime. At the DC bias point, $g_{m}=2 \mathrm{mS}$ and $r_{0}=30 \mathrm{k} \Omega$. Note that v_{i} is an ac small-signal source. What is the value of $R_{\text {out }}$ at the indicated location?
(1) $0.5 \mathrm{k} \Omega$
(2) $4.3 \mathrm{k} \Omega$
(3) $5 \mathrm{k} \Omega$
(4) $7.5 \mathrm{k} \Omega$
(5) $10 \mathrm{k} \Omega$
(6) $20 \mathrm{k} \Omega$
(7) $40 \mathrm{k} \Omega$

Q18 - Q19 consider the MOSFET circuit shown below. The MOSFET operates in saturation regime. At the $D C$ bias point, $g_{m}=2 \mathrm{mS}$ and $r_{0}=\infty \mathrm{k} \Omega$. Note that v_{i} is an ac small-signal source.

Q18. What is the magnitude of the small-signal voltage gain between the input and the gate of the MOSFET, $\mathbf{v}_{\mathrm{g} /} / \mathbf{v}_{\mathbf{i}}$?
(1) 0
(2) 0.5
(3) 0.75
(4) 0.9
(5) 1
(6) 5
(7) 10

Q18 - Q19 consider the MOSFET circuit shown below. The MOSFET operates in saturation regime. At the $D C$ bias point, $g_{m}=2 \mathrm{mS}$ and $r_{0}=\infty \mathrm{k} \Omega$. Note that v_{i} is an ac small-signal source.

Q19. What is the magnitude of the smallsignal voltage gain between the gate of the MOSFET and the output, $\mathbf{V}_{\text {out }} / \mathbf{V g s}^{\text {g }}$?
(1) 0.5
(2) 2
(3) 4
(4) 5
(5) 8
(6) 10
(7) 15

Q20. Consider the 2-stage amplifier shown in the figure below. Note that each amplifier stage is represented by an equivalent circuit (i.e. these are not equivalent circuits for transistors). Also note that each stage is characterized by an open-circuit voltage gain (controlled sources in figure are VCVS) and input/output resistances. What is the magnitude of the overall voltage gain ($\mathrm{v}_{\mathrm{o}} / \mathrm{v}_{\mathrm{s}}$)?

(1) 1
(2) 4.5
(3) 9
(4) 10
(5) 20
(6) 36
(7) 40

Extra Work Space

Equation Sheet: ECE-255 Spring 2019

$$
\begin{array}{ll}
n p=n_{i}^{2} \quad \sigma=q\left(p \mu_{p}+n \mu_{n}\right) & D_{n} / \mu_{n}=D_{p} / \mu_{p}=k_{B} T / q=V_{T} \\
J_{n}=q n \mu_{n} E+q D_{n} d n / d x & J_{p}=q p \mu_{p} E-q D_{p} \frac{d p}{d x} \\
I_{D}=I_{S}\left(e^{V / V_{T}}-1\right) & r_{d}=V_{T} / I_{D}
\end{array}
$$

NPN:
$\begin{array}{ll}i_{C}=I_{S} e^{v_{B E} / V_{T}} & I_{S}=A_{E}\left(\frac{q D_{n} n_{i}^{2}}{W_{B} N_{A}}+\frac{q D_{p} n_{i}^{2}}{W_{E} N_{D}}\right) \\ i_{B}=\frac{i_{C}}{\beta} & i_{C}=\alpha i_{E}\end{array} i_{C}=\beta i_{B}$
$g_{m}=\frac{I_{C}}{V_{T}} \quad g_{m} r_{\pi}=\beta \quad r_{o} \approx V_{A} / I_{C} \quad r_{e}=r_{\pi} /(\beta+1)=\alpha / g_{m} \approx 1 / g_{m}$
NMOS:
$V_{G S}>V_{t n} \quad V_{D S} \leq\left(V_{G S}-V_{t n}\right) \quad I_{D}=k_{n}^{\prime}\left(\frac{W}{L}\right)\left[\left(V_{G S}-V_{t n}\right) V_{D S}-\frac{V_{D S}^{2}}{2}\right]$
$V_{G S}>V_{t n} \quad V_{D S}>\left(V_{G S}-V_{t n}\right) \quad I_{D}=\frac{k_{n}^{\prime}}{2}\left(\frac{W}{L}\right)\left(V_{G S}-V_{t n}\right)^{2}\left(1+\lambda V_{D S}\right) \quad \lambda=\frac{1}{V_{A}}$
$k_{n}^{\prime}=\mu_{n} C_{o x} \quad C_{o x}=\varepsilon_{o x} / t_{o x}$
$g_{m}=\frac{I_{D}}{\left(V_{G S}-V_{t n}\right) / 2} \quad r_{o} \approx V_{A} / I_{C}$
CE:

$$
A_{v_{o}}=-g_{m} R_{C}
$$

$$
R_{i n}=r_{\pi}
$$

$$
R_{o}=R_{C}
$$

CE with emitter R: $\quad A_{v_{o}}=\frac{r_{\pi}}{r_{\pi}+(\beta+1) R_{E}}\left(-g_{m} R_{C}\right)$

$$
R_{i n}=r_{\pi}+(\beta+1) R_{E} \quad R_{o}=R_{C}
$$

CS:

$$
A_{v_{o}}=-g_{m} R_{D}
$$

$R_{\text {in }}=\infty$ $R_{o}=R_{D}$
CS with source R: $A_{v_{o}}=\frac{1}{1+g_{m} R_{S}}\left(-g_{m} R_{D}\right)$
$R_{i n}=\infty$
$R_{o}=R_{D}$

