Bipolar Junction Transistors (BJTs)

(Sedra and Smith, 7th Ed., Sec. 6.1)

Mark Lundstrom
School of ECE
Purdue University
West Lafayette, IN USA
BJT’s

1) Transistors
2) PN junction review
3) BJT structures
4) Energy band treatment
5) BJT IV: active region
6) BJT IV: saturation region
Transistor as a “black box”

A small current (or voltage) on the control terminal controls a much larger current through two other terminals.
IV characteristics: resistor

\[I = \frac{V}{R} \]

Lundström: 2019
IV characteristics: ideal current source

\[I = I_0 \]

\[V \]

Lundstrom: 2019
IV characteristics: transistors

C: collector
B: base
E: emitter

NPN BJT

I_C vs V_{CE}

“output characteristics”

V_{BE1}, I_{B1}

“I”, “saturation region”

“resistor”, base controlled current source “active region”
IV characteristics: real current sources

\[I = I_0 + \frac{V}{R_0} \]

\(R_0 \): output resistance
IV characteristics: transistors

C: collector
B: base
E: emitter

NPN BJT

output characteristics

output resistance

L_B, I_{B1}

L_{BE1}

L_{CE}
Applications of BJT’s

symbol

C: collector

B: base

E: emitter

NPN BJT

I_C

I_B

I_E

Lundstrom: 2019
HBTs

Circuit board of an iPhone 5
Double diffused BJT

Silicon wafer

Lundstrom: 2019
To understand this device, we just need to understand PN junctions.
To understand this device, we just need to understand PN junctions.
This is not a BJT
NP Junction in equilibrium

\[\Delta E = qV_{bi} \]

\[V_{bi} = \frac{k_B T}{q} \ln \left(\frac{N_A N_D}{n_i^2} \right) \]

\[n_n = N_D \]

\[p_p = N_A \]

N-type

P-type

Lundstrom: 2019
A forward biased junction (FB) injects electrons from the N-side across the junction and into the P-side.

A FB junction also injects holes from the P-side across the junction and into the N-side.
A reverse biased junction (RB junction) collects minority carrier electrons from the P-side.

\[V_R = -V_A \]

\[q(V_{bi} - V_A) \]

A reverse biased junction collects minority carrier holes from the N-side.

Lundstrom: 2019
BJT: equilibrium energy band diagram

E_x \quad $E_C(x)$ \quad $E_V(x)$

qV_{bi1} \quad qV_{bi2}

N-type emitter \quad P-type base \quad N-type collector

Lundstrom: 2019
Energy band diagrams

https://www.pbs.org/wgbh/americanexperience/features/silicon-timeline-silicon/
BJT: active region energy band diagram

FB emitter-base junction injects electrons in the base

RB collector-base junction collects electrons that diffuse across the base
BJT: active region energy band diagram

\[I_C = I_s e^{\frac{V_{BE}}{V_T}} \]

almost independent of collector voltage

Lundström: 2019
Forward biased NP junction

\[I_n \propto \frac{n_i^2}{N_A} e^{V_D/V_T} \]

\[I_p \propto \frac{n_i^2}{N_D} e^{V_D/V_T} \]
NPN BJT operation (general)

In general, four currents, two for each junction

Lundstrom: 2019
NPN BJT operation (active)

\[I_{En} \propto \frac{n_i^2 e^{V_{BE}/V_T}}{N_{AB}} \]

\[I_{Ep} \propto \frac{n_i^2 e^{V_{BE}/V_T}}{N_{DE}} \]

\[I_{En} \gg I_{Ep} \quad (N_{DE} \gg N_{AB}) \]

\[I_C \approx I_{En} \]

\[I_C = I_S e^{qV_{BE}/k_BT} \]

Lundstrom: 2019
BJT in active region

C: collector
B: base
E: emitter

NPN BJT

Early effect: \[I_C = I_S e^{V_{BE}/V_T} \left(1 + V_{CE}/V_A \right) \]

Lundstrom: 2019
Base current

\[I_C = I_{En} \approx \frac{n_i^2}{N_{AB}} e^{V_{BE}/V_T} \]

\[I_B \approx I_{Ep} \approx \frac{n_i^2}{N_{DE}} e^{V_{BE}/V_T} \ll I_C \]

\[I_B = \frac{I_S}{\beta} e^{V_{BE}/V_T} \ll I_C \]

10 < \beta < 1000

Lundstrom: 2019
BJT in active region (beta = 100)

\[I_C = I_S e^{V_{BE}/V_T} \]

NPN BJT

\[I_C = \frac{I_S}{\beta} e^{V_{BE}/V_T} \]

active region
EB: FB, BC: RB

\[V_{CE} \]
BJTs at low V_{CE}

What happens here (at low V_{CE})?

Lundstrom: 2019
NPN BJT at low V_{CE}

KVL:

$$V_{BE} + V_{CB} = V_{CE}$$

Active region:

$$V_{BE} \approx 0.7 \text{ V}$$

If:

$$V_{CE} < V_{BE}$$

$$V_{CB} < 0$$

The base-collector junction is forward biased!

Lundstrom: 2019
NPN BJT operation (saturation)

Lundstrom: 2019
BJT at low V_{CE}

NPN BJT

E: emitter
B: base
C: collector

I_E, I_B, I_C

saturation region
EB: FB, BC: FB

$I_C < I_S e^{qV_{BE}/k_B T}$
$I_B > \frac{I_C}{\beta}$

Lundstrom: 2019
Three regions

C: collector
B: base
E: emitter

NPN BJT

V_{CE}

I_C

Active region
EB: FB, BC: RB

Saturation region
EB: FB, BC: FB

Cut-off region
EB: RB, BC: RB

Lundstrom: 2019
A BJT consists of two, interacting PN junctions.

BJTs come in two flavors – NPN and PNP.

In the active region, the EB junction is forward biased and the BC junction is reverse biased.

In the active region, a small base current produces a much larger collector current.
BJT’s

1) Transistors
2) PN junction review
3) BJT structures
4) Energy band treatment
5) BJT IV: active region
6) BJT IV: saturation region