Spring 2019 Purdue University

ECE 255: L11.2

BJT Circuit Analysis and Design
 (Sedra and Smith, $7^{\text {th }}$ Ed., Sec. 6.2)

Mark Lundstrom
School of ECE
Purdue University
West Lafayette, IN USA

Announcements

Exam 1: Thursday, Feb. 7, 6:30 PM, LILY 1105. (Weeks -1- 4 topics, semiconductors, diodes, BJTs. i.e. HW1-HW4)

Two practice exams are posted on BlackBoard
Professor Janes will conduct a help session for Exam 1 on Thursday, 2/7 at 1:30 PM in ME 1061.

Spice 1 project postponed until Monday, Feb. 11

Note that there was an error in Lecture 11 Slide 8. Now corrected (and L11 has been split into two parts)

Announcements

We will have class on Friday, Feb. 8.
The topic will be MOSFETs. Sedra and Smith 5.1 and 5.2

NPN Common emitter (active region)

$$
\begin{array}{ll}
I_{C}=I_{S} e^{V_{B E} / V_{T}} & I_{B}=\frac{I_{S}}{\beta} e^{V_{B E} / V_{T}} \\
I_{C}=\beta I_{B} & I_{C}=\alpha I_{E} \\
\beta=\frac{\alpha}{1-\alpha} \gg 1 & \alpha=\frac{\beta}{\beta+1}<1
\end{array}
$$

BE: FB $\quad V_{B E}>0$
BC: RB $V_{C B}=V_{C E}-V_{B E}>0$

NPN DC circuit analysis

Find I_{C} and R_{C}

DC circuit analysis

DC circuit analysis

DC circuit analysis

$-5 \mathrm{~V}$
Lundstrom: 2019

DC circuit analysis: Result

$$
I_{C}=1.07 \mathrm{~mA} \sum_{R_{C}=3.5 \mathrm{k} \Omega}^{+5 \mathrm{~V}}=\begin{aligned}
& R_{R}=4 \mathrm{k} \Omega \\
& -5 \mathrm{~V}
\end{aligned}
$$

Now change the problem

$$
\begin{aligned}
& I_{C}=? \mathrm{~mA}\left\{_{2}=\begin{array}{l}
+5 \mathrm{~V}, \\
R_{C}=10 \mathrm{k} \Omega
\end{array},\right. \\
& \text { Find } \mathrm{I}_{\mathrm{C}} \text { and } \mathrm{V}_{\mathrm{CE}}
\end{aligned}
$$

Now change the problem

$$
I_{C}=? \mathrm{~mA}\left\{_{\sum_{C}=10 \mathrm{k} \Omega}^{+5 \mathrm{~V}}=\begin{array}{l}
R_{-} \\
R_{R}=4 \mathrm{k} \Omega \\
-5 \mathrm{~V}
\end{array}\right.
$$

1) Assume active region
2) Find I_{E}
3) Find I_{C}
4) Find V_{C}
5) Find R_{C}
6) Check: Active region?

Now change the problem

Now change the problem

$$
\begin{aligned}
& I_{E}=\frac{-0.7-(-5.0)}{4 \mathrm{k} \Omega}=1.08 \mathrm{~mA} \\
& I_{C}=\frac{\beta}{\beta+1} I_{E}=1.07 \mathrm{~mA} \\
& V_{C}=5-1.07 \times 10<0 \text { ! }
\end{aligned}
$$

The transistor is saturated!

Saturation analysis

Saturation analysis: result

$$
\begin{aligned}
& I_{E}=\frac{-0.7-(-5.0)}{4 \mathrm{k} \Omega}=1.08 \mathrm{~mA} \\
& V_{C}=-0.7+0.2=-0.5<0 \\
& I_{C}=\frac{5-(-0.5)}{10 \mathrm{k} \Omega}=0.55 \mathrm{~mA}
\end{aligned}
$$

DC circuit design

NPN DC circuit design

I工

PNP Circuit Analysis

Lundstrom: 2019

NPN and PNP Circuit Analysis

Summary

In analysis, assume an operating region, do the analysis, then check that the proper operating region was assumed.

Generally, design is "easier" than analysis (but more open).

BJT Circuit Analysis and Design

1) NPN BJT Circuit Analysis and Design
2) PNP Circuits
3) NPN and PNP Circuits

