ECE 255: L23

BJT Current Mirrors, Self-Gain and CB/CG Reprise
 Sedra and Smith
 Sec. 8.2, 8.3 ($7^{\text {th }}$ Ed.)

School of ECE
Purdue University
West Lafayette, IN USA

Announcements

A1:

Outline

1) Finish MOSFET Current Mirrors
2) BJT Current Mirrors
3) CB/GG with Active Load

MOSFET current mirror - ideal $I_{\text {REF }}$

MOSFET current mirror - PMOS

MOSFET current mirror - as Active Load (in CS)

CS used for illustration, but also works for other amplifier topologies.

MOSFET current mirror - Extending to multiple stages

Practical Components in place of $I_{\text {REF }}$

MOSFET: Design

$$
\begin{array}{ll}
V_{D D}=+5 \mathrm{~V} & \text { Design for: } \quad I_{D}=0.5 \mathrm{~mA} \\
I_{D}=\frac{k_{n}}{2} \frac{W}{L}\left(\begin{array}{ll}
V_{G S} & V_{m}=? \mathrm{k} \\
V_{m}
\end{array}\right)^{2} & V_{G S}=3.5=0.1\left(\begin{array}{ll}
V_{G S} & 1
\end{array}\right)^{2} \\
V_{G S}=V_{D}=3.24 \mathrm{~V}
\end{array}
$$

MOSFET: Analysis

$$
I_{D}=\frac{k_{n}}{2} \frac{W}{L}\left(V_{G S} \quad V_{t n}\right)^{2}
$$

$$
\begin{aligned}
& I_{D}=? \mathrm{~mA} \\
& \\
& \quad I_{D}=0.1\left(\begin{array}{ll}
V_{G S} & 1
\end{array}\right)^{2} \\
& \\
& \\
& V_{G S}=V_{D D}
\end{aligned} I_{D} R_{1} 1 .
$$

2 equations in 2 unknowns
Solve quadratic eqn.

MOSFET current mirror

MOSFET current mirror

MOSFET current source

P-MOSFET current source

Can also set $\mathrm{I}_{\text {REF }}$ with Transistors

Outline

1) Finish MOSFET Current Mirrors
2) BJT Current Mirrors
3) CB/GG with Active Load

BJT Current Mirror

Analysis

Design

BJT "Current Mirror"

BJT Current Mirror

KCL:

$$
\begin{aligned}
& I_{C}+2 I_{B}=I_{R_{1}}=0.5 \mathrm{~mA} \\
& I_{C}+2 I_{C} /=I_{R} \\
& I_{C}=\frac{I_{R_{1}}}{1+2 /} \\
& I_{C}=\frac{0.5}{1+2 / 75}=0.487 \mathrm{~mA} \\
& I_{C_{1}}=I_{C 2}=0.487 \mathrm{~mA}
\end{aligned}
$$

BJT Current Mirror (discussion)

BJT Current Mirror (discussion)

$$
V_{B E}=0.7 \mathrm{~V}
$$

$$
I_{C}=I_{S} e^{q^{V_{E E} /} / k_{B} T}\left(1+V_{C E} / V_{A}\right)
$$

We have ignored the Early effect

And we have assumed that the transistors have equal areas.

$$
I_{S}=A_{E B} I_{S}
$$

BJT Current Mirror (different areas)

Now considering Q_{2} with different emitter area than Q_{1} (different I_{s}). At same $V_{B E}, I_{B 2}=m I_{B 1}$.

BJT Current Mirror - Numerical Example

$$
\begin{aligned}
& m=\frac{A_{E B 2}}{A_{E B 1}} \\
& \frac{I_{C 2}}{I_{R_{1}}}=\frac{m}{1+(m+1) /}\left(1+\frac{V_{C E} V_{B E}}{V_{A 2}}\right) \\
& \mathrm{I}_{\mathrm{C} 2}=0.5 \mathrm{~mA} \frac{9}{1+(10 / 75)} \\
& =4.0 \mathrm{~mA} \\
& \begin{array}{l}
8 x I_{R 1} \text {, versus } 9 x \\
\text { area ratio }
\end{array} \\
& V_{B E}=0.7 \mathrm{~V} \\
& \mathrm{~m}=9 \\
& V_{\mathrm{A} 2}=\infty
\end{aligned}
$$

Current Mirror (output resistance)

Current Mirror as active load

CE with Active Load - Small Signal

Compared to resistive load: A_{vo} larger, $\mathrm{R}_{\text {out }}$ larger

PNP and NPN current mirrors

Fig. $7.316^{\text {th }}{ }^{-V_{\text {VEF }}}$ Ed. Sedra and Smith

Current Mirror Comments

Many sophisticated current mirror / current source circuits exist (to minimize beta mismatch, maximize output resistance.

See: Sedra - Smith 6 ${ }^{\text {th }}$ Ed. Sec. 7.5 Sedra - Smith 7 ${ }^{\text {th }}$ Ed. Sec. 8.6

Outline

1) Current Mirrors
2) Common Source with "active load"

Basic IC gain cell

Maximum gain

Maximum (intrinsic/self) gain

Basic IC gain cell (BJT)

Intrinsic gain (BJT)

Intrinsic gain (BJT)

Implementation

$$
\begin{gathered}
A_{o}=g_{m}\left(r_{o N} \| r_{o P}\right) \\
A_{0} \quad\left(\begin{array}{ll}
30 & 40
\end{array}\right) / 2
\end{gathered}
$$

Question:

 How can we increase the gain of the basic cell?Answer: Cascode

Outline

1) Finish MOSFET Current Mirrors
2) BJT Current Mirrors
3) CB/GG with Active Load

Common base

Common base amplifier

CB input resistance

CB input resistance (ii)

CB input resistance (iii)

CB Output Resistance

CB Output Resistance

KCL at E: $\quad 0=i_{\text {test }}-g_{m} v_{\text {be }}-\left(v_{\text {test }}-v_{e}\right) / r_{\text {o }}$

$$
0=i_{\text {test }}+g_{m} v_{e}-\left(v_{\text {test }}-v_{e}\right) / r_{o}
$$

Solve for $v_{\text {test }} / i_{\text {test }}: \quad R_{0}{ }^{\prime}=r_{o}\left[1+g_{m}\left(r_{r}\left\|R_{E}\right\| R_{\text {series }}\right)\right]$

Common base amplifier

$$
{ }_{b e}=A_{V}=V_{o} / v_{i}=+g_{m} R_{\text {out }}
$$

Common base with Active Load

$$
R_{i n}=R_{E}\|r\| \frac{1}{g_{m}}
$$

$$
R_{0}=R_{0}^{\prime}\left\|R_{C M}=R_{0}^{\prime}\right\| r_{o 2}
$$

$$
R_{0}^{\prime}=r_{o}\left[1+g_{m}\left(r_{\pi}\left\|R_{E}\right\| R_{\text {series }}\right)\right]=r_{o}\left[1+g_{m}\left(r_{\pi} \| R_{\text {Th-E }}\right)\right]
$$

$A_{V}=v_{o} / v_{i}=+g_{m} R_{\text {out }}$

Common gate amplifier

Common gate with Active Load

$\mathrm{R}_{\text {in }}=\mathrm{R}_{\mathrm{s}} \| \mathbf{1 / \mathrm { g } _ { \mathrm { m } }}$
$\mathbf{R}_{0}=\mathbf{R}_{0}{ }^{\prime}| | \mathbf{R}_{\mathrm{CM}}=\mathbf{R}_{0}{ }^{\prime}| | \mathrm{r}_{\mathrm{o} 2}$
$R_{0}{ }^{\prime}=\mathrm{r}_{\mathrm{o}}\left[1+\mathrm{g}_{\mathrm{m}}\left(R_{\mathrm{s}} \| R_{\text {series }}\right)\right]=\mathrm{r}_{\mathrm{o}}\left[1+\mathrm{g}_{\mathrm{m}}\left(\mathbf{R}_{\mathrm{Th}-\mathrm{s}}\right)\right.$
$A_{V}=v_{o} / v_{i}=+g_{m} R_{\text {out }}$

