Spring 2019 Purdue University

ECE 255: L27

Preparation for Exam 3

Mark Lundstrom
School of ECE
Purdue University
West Lafayette, IN USA

Announcements

1) HW8 solutions have been posted
2) Exam 3 is at 6:30 PM, Tuesday, April 2
3) No class on Wed., April 3
4) Spice Project 3 will be due on April 17
5) Professor Janes will conduct a help session on Tuesday, 1:30 PM ME1061

Multi-stage amplifiers

Voltage gain

$$
\left.\left.\left.A_{v}=\frac{v_{o}}{v_{s}}=\frac{R_{i n}}{R_{i n}+R_{s i g}} \times A_{v}\right)_{C S} \times A_{v}\right)_{C E} \times A_{v}\right)_{C D}
$$

$$
\begin{aligned}
& \frac{R_{i n}}{R_{i n}+R_{s i g}}=\frac{R_{G}}{R_{G}+R_{s i g}} \\
& A_{C S}=-g_{m 1} R_{D 1} \|\left[\left(R_{1} \| R_{2}\right) \| r_{\pi 2}\right] \\
& A_{C E}=-g_{m 2} R_{C 2} \|\left[\left(R_{3} \| R_{4}\right) \|\left\{r_{\pi 3}+(\beta+1)\left(R_{E 3} \| R_{L}\right)\right\}\right] \\
& A_{C C}=\frac{(\beta+1)\left(R_{E 3} \| R_{L}\right)}{r_{\pi 3}+(\beta+1)\left(R_{E 3} \| R_{L}\right)}
\end{aligned}
$$

Input and output resistance

$$
\begin{aligned}
& R_{i n}=R_{G} \\
& R_{\text {out }}=R_{E 3} \|\left[\frac{r_{\pi 3}+\left(R_{3} \| R_{4}\right) \| R_{C 2}}{\beta+1}\right]
\end{aligned}
$$

HW7 Problem 1

HW1 Prob. 1

$R_{\text {in }}$
$R_{\text {out }}$
First, assume that ro is infinite
$A_{v_{i}}=\frac{v_{o}}{v_{i}}$
$A_{v_{s}}=\frac{v_{o}}{v_{s}}$
Can you see that $A_{v i} \sim 10 ?$

HW1 Prob. 1

$$
\begin{aligned}
& R_{\text {in }}=R_{E} \| \frac{r_{\pi}}{\beta+1} \\
& R_{\text {out }}=R_{C}
\end{aligned}
$$

First, assume that ro is infinite

$$
A_{v_{s}}=\frac{v_{o}}{v_{s}}=\frac{R_{i n}}{R_{i n}+R_{s i g}} \times \frac{r_{\pi}}{r_{\pi}+(\beta+1) R_{E}}\left(-g_{m} R_{C} \| R_{L}\right)
$$

HW1 Prob. 1

$$
R_{i n}=R_{E} \| \frac{r_{\pi}}{\beta+1} \rightarrow ?
$$

$$
R_{\text {out }}=R_{C} \rightarrow ?
$$

Now include ro

$$
A_{v_{s}}=\frac{v_{o}}{v_{s}}=\frac{R_{i n}}{R_{i n}+R_{s i g}} \times \frac{r_{\pi}}{r_{\pi}+(\beta+1) R_{E}}\left(-g_{m} R_{C} \| R_{L O A D}\right) \rightarrow ?
$$

HW 7 \#1 with r_{0}

HW1 Prob. 1

$$
\begin{aligned}
& R_{\text {in }}=R_{E}\left\|\frac{r_{\pi}}{\beta+1} \rightarrow R_{E}\right\|\left[\frac{r_{\pi}}{\beta+1}+\frac{R_{C} \| R_{L O A D}}{g_{m} r_{o}}\right] \approx R_{E} \| \frac{r_{\pi}}{\beta+1} \\
& R_{\text {out }}=R_{C} \rightarrow R_{C} \|\left[r_{o}+g_{m} r_{o}\left(R_{E}\left\|R_{\text {sig }}\right\| r_{\pi}\right)\right] \approx R_{C}
\end{aligned}
$$

$$
A_{v_{s}}=\frac{v_{o}}{v_{s}}=\frac{R_{i n}}{R_{i n}+R_{s i g}} \times \frac{r_{\pi}}{r_{\pi}+(\beta+1) R_{E}}\left(-g_{m} R_{C} \| R_{L O A D}\right) \rightarrow
$$

$$
\frac{R_{i n}}{R_{i n}+R_{s i g}} \times \frac{r_{\pi}}{r_{\pi}+(\beta+1) R_{E}}\left(-g_{m} R_{C}\left\|\left[r_{o}+g_{m} r_{o}\left(R_{E}\left\|R_{s i g}\right\| r_{\pi}\right)\right]\right\| R_{L O A D}\right)
$$

HW7 \#2

Lundstrom: 2019

HW7 \#2

$R_{\text {in }}$
$R_{\text {out }}$
Assume that ro is finite
$A_{v_{s}}=\frac{v_{o}}{v_{s}}$

HW7 \#2

$$
\begin{aligned}
& R_{\text {in }}=R_{B 1}\left\|R_{B 2}\right\|\left[r_{\pi}+(\beta+1)\left(R_{E}\left\|R_{L O A D}\right\| r_{o}\right)\right] \\
& R_{\text {out }}=R_{E}\left\|r_{o}\right\| \frac{r_{\pi}+R_{s i g} \|\left(R_{B 1} \| R_{B 2}\right)}{\beta+1} \\
& A_{v_{s}}=\frac{v_{o}}{v_{s}}=\frac{R_{i n}}{R_{i n}+R_{\text {sig }}} \times \frac{(\beta+1) R_{E}\left\|r_{o}\right\| R_{L O A D}}{r_{\pi}+(\beta+1) R_{E}\left\|r_{o}\right\| R_{L O A D}}
\end{aligned}
$$

HW7 \#3

HW7 \#3 with ro infinite

$R_{\text {in }}$
$R_{\text {out }}$
Assume that ro is infinite
$A_{v_{s}}=\frac{v_{o}}{v_{s}}$

HW7 \#3 with ro finite

$R_{\text {in }}$

Assume that r_{o} is finite

(left as an exercise)

$$
A_{v_{s}}=\frac{v_{o}}{v_{s}}
$$

HW7 \#3 with ro

HW7 \#4 r_{0} infinite

$$
\begin{aligned}
& R_{\text {in }}=? \\
& R_{\text {out }}=? \\
& A_{v_{s}}=\frac{v_{o}}{v_{s}}=?
\end{aligned}
$$

Lundstrom: 2019

HW8 \#5 include r_{0}

$R_{i n}=$?
$R_{\text {out }}=$?

$$
A_{v_{s}}=\frac{v_{o}}{v_{s}}=?
$$

HW8 \#5 include r_{0}

$$
\begin{array}{ll}
R_{\text {in }}=\infty & r_{o}=100 \mathrm{k} \Omega \\
R_{\text {out }}=r_{o 2}+\left(g_{m 2} r_{o 2}\right) r_{o 3} & g_{m}=2 \mathrm{mS} \\
& R_{\text {out }}=100+(200) 100=20.1 \mathrm{M} \Omega \\
A_{v_{s}}=\frac{v_{o}}{v_{s}}=-g_{m 1} R_{\text {oUT }} & A_{v_{s}}=-40,100
\end{array}
$$

