ECE 255: L2

Signals and Amplifiers

(Sedra and Smith, Secs. 1.1-1.6)

School of ECE
Purdue University
West Lafayette, IN USA

Signals

Analog
$v_{D}(t)$
Digital
$v_{D}(t)$
DC
V_{D}
DC+ small signal AC

Linear amplifiers

Generally, want one or more of: voltage gain, current gain, power gain

Circuit model of an amplifier

input resistance
output resistance

Represented in terms of voltage gain - will be our default representation.

Source and load resistances

Circuit model of an amplifier

$$
v_{i}=\frac{R_{i}}{R_{i}+R_{S}} v_{s} \quad A_{v_{s}}=\frac{v_{o}}{v_{s}}=A_{v_{i}}\left(\frac{R_{i}}{R_{i}+R_{S}}\right)\left(\frac{R_{L}}{R_{L}+R_{o}}\right) \quad v_{o}=A_{v_{i}} v_{i} \frac{R_{L}}{R_{L}+R_{o}}
$$

"Impedance Mismatch"

Output of
Microcontroller

$$
\begin{gathered}
R_{S}=10 \mathrm{k} \Omega \\
v_{s}=1 \mathrm{~V}
\end{gathered}
$$

How much power (volume) do we deliver?

$$
v_{o}=v_{s} \frac{16}{16+10,000}=0.0016 \mathrm{~V} \quad P_{o}=\frac{v_{o}^{2}}{R_{L}} \approx 0.16 \mu \mathrm{~W}
$$

"Impedance Transformation"

Frequency response

Sec. 1.6 also discusses the frequency response amplifiers, a topic that we will get to near the end of ECE 255.

Given a specific amplifier, we will ask:

1) What is its voltage (current, power) gain?
2) What is its input resistance?
3) What is its output resistance?

Finding Thevenin equivalent circuits

Resistor network: series/parallel combinations may work
Generally need another approach if sources present (particularly dependent)

Finding Thevenin equivalent circuits

Apply a test voltage, then find the current

Finding Thevenin equivalent circuits (2)

$$
R_{t h}=\frac{v_{x}}{i_{x}}
$$

Inject a test current, then find the voltage

Exercise 1

- "Kill" all independent sources (open I sources, short V sources)
- Keep all dependent sources (and control elements)
- Apply a test voltage, then find the current
- Or
- Apply a test current, then find voltage
- Likely need to apply KCL or KVL within circuit

Exercise 1

Answer: $\quad R_{t h}=R_{1}+\left(1+g_{m} R_{1}\right) R_{2}$

Exercise 2

Answer: $\quad R_{t h}=\frac{1}{g_{m}}$

Exercise 3

Answer: $\quad R_{t h}=R_{1} \| \frac{1}{g_{m}}$

Exercise 4

Find the input resistance seen by the source, v_{s}.

Answer: $\quad R_{i n}=\frac{R_{1}}{1-g_{m} R_{1}}$

