ECE 255: L33

High Frequency Response I
(Sedra and Smith, 7th Ed., Sec. 10.2)

Mark Lundstrom
School of ECE
Purdue University
West Lafayette, IN USA
Announcements

HW10 Due 5:00 PM Friday, April 19 in EE-209 dropbox

LTSpice Project III Due 5:00 PM Wed, April 17

LTSpice Help Session to be announced

Practice Final Exam posted

No Office Hours today (Lundstrom)
Outline

1) LF review
2) Low pass filter / STC circuits
3) High freq model for MOSFETs
4) High freq models for BJTs
A Bode plot is a graphical representation of a system's frequency response. It shows the magnitude and phase of a frequency response as a function of frequency on a logarithmic scale. The vertical axis represents the magnitude in decibels (dB), and the horizontal axis represents the frequency on a logarithmic scale (log f).

The plot typically includes the magnitude of the frequency response, denoted as $|A_{v}|$ dB, and the magnitude of the mid-frequency response, denoted as $|A_{v}(\text{mid})|$. The bandwidth (BW) is defined as the frequency range where the magnitude is within 3 dB of its maximum value.

The lower 3 dB point is the frequency at which the magnitude drops to 3 dB below its maximum value, f_L. The upper 3 dB point is the frequency at which the magnitude drops to 3 dB below its maximum value, f_H.
Short-circuit time constant method

\[V_i(j\omega) \]

\[\omega_{L1} = \frac{1}{RthC_1} \]

\[V_o(j\omega) \]

The corner frequency (the pole) is one over a time constant – just find the RC time constant.

While we compute this corner frequency, we assume that the other C’s are shorted – this produces a STC circuit.

\[\omega_L \approx \omega_{L_{\text{max}}} \]

\[\omega_L < \omega_{L1} + \omega_{L2} + \omega_{L3} + \ldots \]
Example: Common Drain Amplifier

\[\omega_{L1} = \frac{1}{R_{th}C_{C1}} \]

\[\omega_{L1} = \frac{1}{(R_{series} + R_G)C_{C1}} \]
Example: Common Drain Amplifier

\[\omega_{L2} = \frac{1}{R_{th}C_{C2}} \]

\[\omega_{L2} = \frac{1}{\left(R_L + R_S \parallel \left(1/g_m \right) \right) C_{C2}} \]
Compute the LF corner freq.

\[R_{G_1 \parallel R_{G_2}} = 243 \text{k} \]

\[R_{\text{series}} = 1 \text{k} \quad R_S = 1.3 \text{k} \]

\[R_L = 24 \text{k} \quad g_m = 1 \text{mS} \]

\[C_{C_1} = 0.1 \mu\text{F} \quad C_{C_1} = 47 \mu\text{F} \]
Compute the LF corner freq.

\[\omega_{L1} = \frac{1}{(1+243) \times 10^3 \times 0.1 \times 10^{-6}} = 41 \]

\[\omega_{L2} = \frac{1}{(24+1.3 || 1) \times 10^3 \times 47 \times 10^{-6}} = 0.87 \]

\[\omega_L \approx \omega_{L1} = 41 = 2\pi f_L \]

\[f_L = 6.5 \text{ Hz} \]

\[R_{G1} \parallel R_{G2} = 243 \text{ k} \]

\[R_{\text{series}} = 1 \text{ k} \quad R_S = 1.3 \text{ k} \]

\[R_L = 24 \text{ k} \quad g_m = 1 \text{ mS} \]

\[C_{C1} = 0.1 \mu\text{F} \quad C_{C1} = 47 \mu\text{F} \]

\[\omega_{L1} = \frac{1}{(R_{\text{series}} + R_G)C_{C1}} \]

\[\omega_{L2} = \frac{1}{(R_L + R_S \parallel (1/g_m))C_{C2}} \]
Find the Thevenin eq. resistance for C_1
Thevenin eq. resistance for C_1

$$R_{th} = \frac{r_\pi}{2} \parallel R_1 \parallel \frac{1}{g_m}$$
1) LF review
2) Low pass filter / STC circuits
3) High freq model for MOSFETs
4) High freq model for BJTs
Bode plot

\[|A_v| \text{ dB} \]

\[-3 \text{ dB} \]

\[|A_v(\text{mid})| \]

\[f_L \]

\[f_H \]

\[\log f \]

BW

upper 3 dB point
\[T(j\omega) = \frac{Y_1}{Y_1 + Y_2} = \frac{1}{1/R_1 + (1/R_2 + j\omega C)} \]

\[T(j\omega) = \frac{T_{mid}}{1 + j\omega/\omega_H} \quad \omega_H = \frac{1}{(R_1 \parallel R_2)C} = \frac{1}{R_{th}C} \]
How would we analyze this circuit?

1) \[\omega_L = \frac{1}{(R_1 + R_2)C_1} \]
 \[\text{C}_2 \text{ open} \]

2) \[\omega_H = \frac{1}{(R_1 \parallel R_2)C_2} \]
 \[\text{C}_1 \text{ short} \]
Bode plot

\[|A_v| \text{ dB} \]

\[|A_v(\text{mid})| \]

\[f_L \] \hspace{2cm} \[f_H \]

-3 dB

BW

Small caps open-circuited.

Large caps short-circuited.

Other large caps short-circuited

Other small caps open-circuited
Outline

1) LF review
2) Low pass filter / STC circuits
3) High freq model for MOSFETs
4) High freq model for BJTs
The answer

\[C_{gd} \]

\[C_{gs} \]
The hf hybrid pi model

\[C_{gd} \]

\[C_{gs} \]

\[g_m v_{gs} \]

\[r_o \]

\[v_{ds} \]
MOSFET under low V_{DS}

\[C = \frac{K_r \epsilon_0}{t} \]

\[C_{gs} = \frac{W L}{2} \frac{K_{ox} \epsilon_0}{t_{ox}} = C_{gd} \]
MOSFET under high V_{DS}

$V_{GS} > V_T$

pinch-off

$C_{gs} = \frac{2}{3} \frac{W L K_{ox} \varepsilon_0}{t_{ox}}$

$C_{gd} \approx 0$
Gate-drain overlap/fringing field capacitance

\[C_{gs} = \frac{2}{3} \frac{W L K_{\text{ox}} \varepsilon_0}{t_{\text{ox}}} \]

\[C_{gd} > 0 \]

Miller capacitance!

Two plates separated by distance.
Characterizing a MOSFET

Short circuit current gain vs. frequency

$I_o(\omega)$
The hf hybrid pi model

\[I_2 + I_o = g_m V_{gs} \]
\[I_o = (g_m - j\omega C_{gd}) V_{gs} \]
\[\frac{I_o}{I_i} = \frac{g_m}{j\omega (C_{gs} + C_{gd})} \left(1 - j\omega C_{gd} / g_m \right) \]
\[I_o = g_m V_{gs} - I_2 \]
\[V_{gs} = I_i \frac{1}{j\omega (C_{gs} + C_{gd})} \]
\[\frac{I_o}{I_i} \approx \frac{g_m}{j\omega (C_{gs} + C_{gd})} \]
\[I_2 = V_{gs} j\omega C_{gd} \]
Characterizing a MOSFET

Short circuit current gain vs. frequency

\[\beta(\omega) = \frac{I_o}{I_i} \approx \frac{g_m}{j\omega(C_{gs} + C_{gd})} \]

\[\beta(\omega) = \frac{\omega_T}{j\omega} \]

\[\omega_T = \frac{g_m}{C_{gs} + C_{gd}} \]

\[\omega_T = \frac{g_m}{C_{tot}} \]

\[I_o(\omega) \]
Gain-Bandwidth product

\[\beta(\omega) = \frac{\omega_T}{j\omega} \]

\[|\beta(\omega)| = \frac{\omega_T}{\omega} \]

\[|\beta(\omega_T)| = 1 \]

20 dB per decade

\[\omega = \omega_T \quad \log_{10} \omega \]
Gain-Bandwidth product

\[\omega_T = \frac{g_m}{(C_{gs} + C_{gd})} = 2\pi f_T \]

\(f_T \) is an important figure of merit for a transistor.

\[f_T (\text{max}) = \frac{1}{2\pi t_t} \]

\[t_t = \frac{L}{\langle v \rangle} \]