Spring 2019 Purdue University

ECE 255: L33

High Frequency Response I (Sedra and Smith, $7^{\text {th }}$ Ed., Sec. 10.2)

Mark Lundstrom School of ECE
Purdue University
West Lafayette, IN USA

Announcements

HW10 Due 5:00 PM Friday, April 19 in EE-209 dropbox

LTSpice Project III Due 5:00 PM Wed, April 17

LTSpice Help Session to be announced

Practice Final Exam posted

No Office Hours today (Lundstrom)
Lundstrom: 2019

Outline

1) LF review
2) Low pass filter / STC circuits
3) High freq model for MOSFETs
4) High freq models for BJTs

Bode plot

Short-circuit time constant method

While we compute this corner frequency, we assume that the other C's are shorted - this produces a STC circuit.

$$
\omega_{L} \approx \omega_{L \max }
$$

$$
\omega_{L}<\omega_{L 1}+\omega_{L 2}+\omega_{L 3}+\ldots
$$

Example: Common Drain Amplifier

Example: Common Drain Amplifier

Compute the LF corner freq.

Compute the LF corner freq.

$$
\begin{aligned}
& \omega_{L 1}=\frac{1}{(1+243) \times 10^{3} \times 0.1 \times 10^{-6}}=41 \\
& \omega_{L 2}=\frac{1}{(24+1.3 \| 1) \times 10^{3} \times 47 \times 10^{-6}}=0.87
\end{aligned}
$$

$$
\omega_{L} \approx \omega_{L 1}=41=2 \pi f_{L}
$$

$$
f_{L}=6.5 \mathrm{~Hz}
$$

$$
\begin{aligned}
& R_{G 1} \| R_{G 2}=243 \mathrm{k} \\
& R_{\text {series }}=1 \mathrm{k} \quad R_{S}=1.3 \mathrm{k} \\
& R_{L}=24 \mathrm{k} \quad g_{m}=1 \mathrm{mS} \\
& C_{C 1}=0.1 \mu \mathrm{~F} \quad C_{C 1}=47 \mu \mathrm{~F} \\
& \omega_{L 1}=\frac{1}{\left(R_{\text {series }}+R_{G}\right) C_{C 1}} \\
& \omega_{L 2}=\frac{1}{\left(R_{L}+R_{S} \|\left(1 / g_{m}\right)\right) C_{C 2}}
\end{aligned}
$$

Find the Thevenin eq. resistance for C_{1}

Thevenin eq. resistance for C_{1}

Outline

1) LF review
2) Low pass filter / STC circuits 3) High freq model for MOSFETs
3) High freq model for BJTs

Bode plot

STC

$$
\begin{aligned}
& T(j \omega)=\frac{Y_{1}}{Y_{1}+Y_{2}}=\frac{1 / R_{1}}{1 / R_{1}+\left(1 / R_{2}+j \omega C\right)} \\
& T(j \omega)=\frac{T_{\text {mid }}}{1+j \omega / \omega_{H}} \quad \omega_{H}=\frac{1}{\left(R_{1} \| R_{2}\right) C}=\frac{1}{R_{t h} C}
\end{aligned}
$$

How would we analyze this circuit?

1) $\quad \omega_{L}=\frac{1}{\left(R_{1}+R_{2}\right) C_{1}} \quad C_{2} \quad$ open
2) $\quad \omega_{H}=\frac{1}{\left(R_{1} \| R_{2}\right) C_{2}} \quad C_{1} \quad$ short

Bode plot

Outline

1) LF review
2) Low pass filter / STC circuits
3) High freq model for MOSFETs
4) High freq model for BJTs

The answer

The hf hybrid pi model

MOSFET under low V_{DS}

MOSFET under high $V_{D S}$

$$
\begin{aligned}
& C_{g s}=\frac{2}{3} \frac{W L K_{o x} \varepsilon_{0}}{t_{o x}} \\
& C_{g d} \approx 0
\end{aligned}
$$

Gate-drain overlap/fringing field capacitance

$$
\begin{aligned}
& C_{g s}=\frac{2}{3} \frac{W L K_{o x} \varepsilon_{0}}{t_{o x}} \\
& C_{g d}>0
\end{aligned}
$$

Miller
capacitance!

Two plates separated by distance.

Characterizing a MOSFET

Short circuit current gain vs. frequency

The hf hybrid pi model

Characterizing a MOSFET

Short circuit current gain vs. frequency

$$
\beta(\omega)=\frac{I_{o}}{I_{i}} \approx \frac{g_{m}}{j \omega\left(C_{g s}+C_{g d}\right)}
$$

$$
\beta(\omega)=\frac{\omega_{T}}{j \omega}
$$

$$
\omega_{T}=\frac{g_{m}}{\left(C_{g s}+C_{g d}\right)}
$$

$$
\omega_{T}=\frac{g_{m}}{C_{\text {tot }}}
$$

Gain-Bandwidth product

Gain-Bandwidth product

$\omega_{T}=\frac{g_{m}}{\left(C_{g s}+C_{g d}\right)}=2 \pi f_{T}$
f_{T} is an important figure of merit for a transistor.
$f_{T}(\max)=\frac{1}{2 \pi t_{t}}$
$t_{t}=\frac{L}{\langle v\rangle}$

