ECE 255: L35

High Frequency Response III
(Sedra and Smith, 7th Ed., Sec. 10.2-10.5)

Mark Lundstrom
School of ECE
Purdue University
West Lafayette, IN USA

Lundstrom: 2019
Announcements

HW11 Due 5:00 PM Friday, April 26 in EE-209 dropbox
Beyond a Bachelor’s Degree

Percentage of the >40% of engineering bachelor’s degree holders over the age of 25 who earned an additional degree beyond the bachelor’s, by degree level and area of degree.

Become a Technology Maestro

The MSECE degree with a Concentration in Innovative Technologies is a new and exciting one year Professional Masters Program in the School of ECE that is designed to prepare students for careers in industry.
Discrete CS Amplifier
Frequency response

\[|A_v| \text{ dB} \]

\[|A_{v1}(\text{mid})| \]

\[-3 \text{ dB} \]

\[f_L \]

\[f_H \]

\[\log f \]
CS Amplifier: LF response
Short circuit time constant method

\[\omega_{L1} = \frac{1}{R_{th1}C_{C1}} \]

\[\omega_{L2} = \frac{1}{R_{th2}C_{C2}} \]

\[\omega_{LS} = \frac{1}{R_{thS}C_{S}} \]

\[\omega_L \approx \omega_{L1} + \omega_{L2} + \omega_{LS} \]
Low frequency response

\[|A_v| \text{ dB} \]

\[|A_{v1}(\text{mid})| \]

\[\omega_L \approx \omega_{L1} + \omega_{L2} + \omega_{LS} \]

\[f_L \approx f_{L1} + f_{L2} + f_{LS} \]
Comments: S-C time constant method

Note that this is an approximate method that works well when there is a **dominant pole**.

For exact solution, see Sec. 10.1 in Sedra and Smith (also appendix in L32).

An added benefit is that the short-circuit time constant method gives insight into which capacitor controls the LF response.
CS Amplifier: HF response
CS Amplifier: mid to high frequencies
Open circuit time constant method

\[\tau_{gs} = R_{ths}C_{gs} = \frac{1}{\omega_{gs}} \]

\[\tau_{gd} = R_{thgd}C_{gd} = \frac{1}{\omega_{gd}} \]

\[\omega_H \approx \frac{1}{\tau_{gs} + \tau_{gd}} \]

\[\frac{1}{\omega_H} \approx \frac{1}{\omega_{gs}} + \frac{1}{\omega_{gd}} \]
Frequency response

\[|A_v| \text{ dB} \]

\[\omega_L \approx \omega_{L1} + \omega_{L2} + \omega_{LS} \]

\[f_L \approx f_{L1} + f_{L2} + f_{LS} \]

\[\frac{1}{\omega_H} \approx \frac{1}{\omega_{gs}} + \frac{1}{\omega_{gd}} \]

\[\frac{1}{f_H} \approx \frac{1}{f_{Hgs}} + \frac{1}{f_{Hgd}} \]

\[f_H \approx \frac{1}{2\pi \left(\tau_{gs} + \tau_{gd} \right)} \]
Comments: O-C time constant method

Note that this is an approximate method that assumes there is a dominant pole.

As discussed Sec. 10.4.3 in Sedra and Smith the OC time constant method generally works well even when there is no dominant pole.

An added benefit is that this OC time constant method gives insight into which capacitor controls the HF response of the amplifier.
Outline

1) Review
2) HF response of CG/CB
3) HF response of cascode
4) HF response of CD/CC
BJT bias circuit

Base must be grounded

Input applied to the emitter

Take output from the collector
CB amplifier
CB at mid and high frequencies
CB at mid and high frequencies
CB at mid and high frequencies

\[
\tau_\pi = ?
\]
CB at mid and high frequencies

\[\tau_\pi = \left(R_{\text{sig}} \parallel R_E \parallel \frac{r_\pi}{\beta + 1} \right) C_\pi \]
CB at mid and high frequencies
CB at mid and high frequencies

\[\tau_\mu = ? \]
CB at mid and high frequencies

\[\tau_\mu = (R_C \parallel R_L) C_\mu \]
\begin{align*}
\tau_{\mu} &= \left(R_C \parallel R_L \right) C_{\mu} \\
\tau_{\pi} &= \left(R_{\text{sig}} \parallel R_E \parallel \frac{r_{\pi}}{\beta + 1} \right) C_{\pi} \\
\omega_H &\approx \frac{1}{\tau_{\pi} + \tau_{\mu}}
\end{align*}

No Miller effect
Outline

1) Review
2) HF response of CG/CB
3) **HF response of cascode**
4) HF response of CD/CC
Discrete cascode
Cascode – mid to high frequencies
Hybrid-pi model

\[\tau_{\pi_1} = ? \]

\[\tau_{\mu_1} = ? \]

\[\tau_{\pi_2} = ? \]

\[\tau_{\mu_2} = ? \]

Does this amplifier suffer from the Miller effect?
Outline

1) Review
2) HF response of CG/CB
3) HF response of cascode
4) HF response of CD/CC
CD at mid-frequencies
CD at high frequencies
CD at high frequencies
CD at high frequencies

\[\tau_{gd} = ? \]

\[R_{sig} \]

\[C_{gd} \]

\[R_G \]

\[R'_{L} \]
\[\tau_{gd} = \left(R_{\text{sig}} \parallel R_{g} \right) C_{gd} \]
CD at high frequencies

\[R_{\text{sig}} \]

\[C_{gd} \]

\[C_{gs} \]

\[R_G \]

\[R'_L \]
CD at high frequencies

\[\tau_{gs} = ? \]

\[R_{\text{sig}} \]

\[C_{gs} \]

\[R_G \]

\[R'_L \]
CD at high frequencies

\[\tau_{gs} = R_{sig} \parallel R_G C_{in} + R'_L C_{out}\]

\[C_{in} = C_{gs} (1 - A)\]

\[C_{in} = C_{gs} \left(1 - \frac{g_m R'_L}{1 + g_m R'_L}\right)\]

\[C_{in} = \frac{C_{gs}}{1 + g_m R'_L}\]

\[\tau_{gs} = (R_{sig} \parallel R_G) C_{in} + \left[R'_L \parallel \left(1/g_m\right)\right] C_{gs}\]
CD at high frequencies

\[\tau_{gd} = C_{gd} R_S' \]

\[\tau_{gs} = \left(R_{\text{sig}} \parallel R_G \right) \frac{C_{gs}}{1 + g_m R_L'} + R_L' \frac{C_{gs}}{1 + g_m R_L'} \]

Good high-frequency response
Comments: CD at high frequencies

We have derived eqns. (10.124) and (10.120) in Sedra and Smith, but S&S point out that often there is no dominant pole, and the analysis is much more complex.

See Sec. 10.6 in Sedra and Smith