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Discrete CS Amplifier 
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Frequency response 
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CS Amplifier: LF response 
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Short circuit time constant method 
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Low frequency response 
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Comments: S-C time constant method 

ω L1 =
1

Rth1CC1

ω L2 =
1

Rth2CC2

ω LS =
1

RthSCS

ω L ≈ω L1 +ω L2 +ω LS

Note that this is an approximate 
method that works well when 
there is a dominant pole. 

For exact solution, see Sec. 10.1 in 
Sedra and Smith (also appendix in 
L32). 

An added benefit is that the short-
circuit time constant method gives 
insight into which capacitor 
controls the LF response. 
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CS Amplifier: HF response 
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CS Amplifier: mid to high frequencies 
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Open circuit time constant method 

τ gs = RthgsCgs =
1
ω gs

τ gd = RthgdCgd =
1

ω gd
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τ gs +τ gd
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Frequency response 
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Comments: O-C time constant method 

Note that this is an approximate 
method that assumes there is a 
dominant pole. 

As discussed Sec. 10.4.3 in Sedra 
and Smith the OC time constant 
method generally works well even 
when there is no dominant pole. 

An added benefit is that this OC 
time constant method gives insight 
into which capacitor controls the 
HF response of the amplifier. 

τ gs = RthgsCgs

τ gd = RthgdCgd

ωH ≈ 1
τ gs +τ gd
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Outline 

1)  Review 
2)  HF response of CG/CB 
3)  HF response of cascode 
4)  HF response of CD/CC 
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BJT bias circuit 
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CB amplifier 
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CB at mid and high frequencies 
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CB at mid and high frequencies 
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CB at mid and high frequencies 
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CB at mid and high frequencies 
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CB at mid and high frequencies 
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CB at mid and high frequencies 
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CB at mid and high frequencies 
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CB 

τ µ = RC || RL( )Cµ

τπ = Rsig || RE ||
rπ

β +1
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ωH ≈ 1
τπ +τ µ

No Miller effect 
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Outline 

1)  Review 
2)  HF response of CG/CB 
3)  HF response of cascode 
4)  HF response of CD/CC 
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Discrete cascode 
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Cascode – mid to high frequencies 
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Hybrid-pi model 

τπ1 = ?

τ µ1 = ?

τπ 2 = ?

τ µ2 = ?

Does this amplifier suffer 
from the Miller effect? 
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Outline 

1)  Review 
2)  HF response of CG/CB 
3)  HF response of cascode 
4)  HF response of CD/CC 
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CD 
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CD at mid-frequencies 
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CD at high frequencies 
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CD at high frequencies 
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CD at high frequencies 
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CD at high frequencies 
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CD at high frequencies 
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CD at high frequencies 
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CD at high frequencies 

 RG
 ′RL

Rsig

υs

Cgs

Cin = Cgs 1− A( )

τ gs = Rsig || RGCin + ′RLCout

Cin = Cgs 1−
gm ′RL

1+ gm ′RL

⎛
⎝⎜

⎞
⎠⎟

Cin =
Cgs

1+ gm ′RL

τ gs = Rsig || RG( )Cin + ′RL || 1 gm( )⎡⎣ ⎤⎦Cgs



42 

CD at high frequencies 
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Comments: CD at high frequencies 

We have derived eqns. (10.124) and (10.120) in Sedra 
and Smith, but S&S point out that often there is no 
dominant pole, and the analysis is much more 
complex. 
 
See Sec. 10.6 in Sedra and Smith 


