Spring 2019 Purdue University

ECE 255: L35

High Frequency Response III (Sedra and Smith, $7^{\text {th }}$ Ed., Sec. 10.2-10.5)

Mark Lundstrom
School of ECE
Purdue University
West Lafayette, IN USA

Announcements

HW11 Due 5:00 PM Friday, April 26 in EE-209 dropbox

Beyond a Bachelor's Degree

Percentage of the $>40 \%$ of engineering bachelor's degree holders over the age of 25 who earned an additional degree beyond the bachelor's, by degree level and area of degree.

Source: National Academies Press, Understanding the Educational and Career Pathways of Engineers (2018)
https://engineering.purdue.edu/ECE/Academics/PMP

Discrete CS Amplifier

Frequency response

CS Amplifier: LF response

Short circuit time constant method

$$
\begin{array}{ll}
\omega_{L 1}=\frac{1}{R_{t h 1} C_{C 1}} \\
\omega_{L 2}=\frac{1}{R_{t h 2} C_{C 2}} & \omega_{L} \approx \omega_{L 1}+\omega_{L 2}+\omega_{L S} \\
\omega_{L S}=\frac{1}{R_{t h S} C_{S}}
\end{array}
$$

Low frequency response

Comments: S-C time constant method

$$
\begin{aligned}
& \omega_{L 1}=\frac{1}{R_{t 11} C_{C 1}} \\
& \omega_{L 2}=\frac{1}{R_{t h 2} C_{C 2}} \\
& \omega_{L S}=\frac{1}{R_{t h S} C_{S}} \\
& \omega_{L} \approx \omega_{L 1}+\omega_{L 2}+\omega_{L S}
\end{aligned}
$$

Note that this is an approximate method that works well when there is a dominant pole.

For exact solution, see Sec. 10.1 in Sedra and Smith (also appendix in L32).

An added benefit is that the shortcircuit time constant method gives insight into which capacitor controls the LF response.

CS Amplifier: HF response

CS Amplifier: mid to high frequencies

Open circuit time constant method

$$
\begin{aligned}
& \tau_{g s}=R_{t h g s} C_{g s}=\frac{1}{\omega_{g s}} \\
& \tau_{g d}=R_{t h g d} C_{g d}=\frac{1}{\omega_{g d}}
\end{aligned}
$$

$$
\omega_{H} \approx \frac{1}{\tau_{g s}+\tau_{g d}} \quad \frac{1}{\omega_{H}} \approx \frac{1}{\omega_{g s}}+\frac{1}{\omega_{g d}}
$$

Frequency response

Comments: O-C time constant method

$$
\begin{aligned}
& \tau_{g s}=R_{t h g s} C_{g s} \\
& \tau_{g d}=R_{t h g d} C_{g d} \\
& \omega_{H} \approx \frac{1}{\tau_{g s}+\tau_{g d}}
\end{aligned}
$$

Note that this is an approximate method that assumes there is a dominant pole.

As discussed Sec. 10.4.3 in Sedra and Smith the OC time constant method generally works well even when there is no dominant pole.

An added benefit is that this OC time constant method gives insight into which capacitor controls the HF response of the amplifier.

Outline

1) Review
2) HF response of CG/CB
3) HF response of cascode
4) HF response of CD/CC

BJT bias circuit

CB amplifier

CB

CB at mid and high frequencies

CB

$$
\begin{aligned}
& \tau_{\mu}=\left(R_{C} \| R_{L}\right) C_{\mu} \\
& \tau_{\pi}=\left(R_{s i g}\left\|R_{E}\right\| \frac{r_{\pi}}{\beta+1}\right) C_{\pi} \\
& \omega_{H} \approx \frac{1}{\tau_{\pi}+\tau_{\mu}}
\end{aligned}
$$

Outline

1) Review
2) HF response of CG/CB
3) HF response of cascode
4) HF response of CD/CC

Discrete cascode

Cascode - mid to high frequencies

Hybrid-pi model

$$
\tau_{\pi 1}=?
$$

$\tau_{\mu 1}=?$
$\tau_{\pi 2}=?$

Does this amplifier suffer from the Miller effect?

$\tau_{\mu 2}=?$

Outline

1) Review
2) HF response of CG/CB
3) HF response of cascode
4) HF response of CD/CC

CD

CD at mid-frequencies

$C D$ at high frequencies

CD at high frequencies

CD at high frequencies

CD at high frequencies

$C D$ at high frequencies

$C D$ at high frequencies

CD at high frequencies

$\tau_{g s}=R_{\text {sig }} \| R_{G} C_{\text {in }}+R_{L}^{\prime} C_{\text {out }}$

$$
\tau_{g s}=\left(R_{s i g} \| R_{G}\right) C_{i n}+\left[R_{L}^{\prime} \|\left(1 / g_{m}\right)\right] C_{g s}
$$

$C_{i n}=C_{g s}(1-A)$
$C_{i n}=C_{g s}\left(1-\frac{g_{m} R_{L}^{\prime}}{1+g_{m} R_{L}^{\prime}}\right)$
$C_{i n}=\frac{C_{g s}}{1+g_{m} R_{L}^{\prime}}$

CD at high frequencies

Comments: CD at high frequencies

We have derived eqns. (10.124) and (10.120) in Sedra and Smith, but S\&S point out that often there is no dominant pole, and the analysis is much more complex.

See Sec. 10.6 in Sedra and Smith

