Spring 2019 Purdue University

ECE 255: L37

Review for Final Exam

Mark Lundstrom
School of ECE
Purdue University
West Lafayette, IN USA

Lundstrom: 2019

Announcements

Final Exam: Thursday, May 2, 7:00 - 9:00 PM, CL50

HW11 Due 5:00 PM Friday, April 26 in EE-209 dropbox (note submission sheet)

Please complete the online course evaluation

No class on Friday, April 26!

2

About the final exam

The final exam is comprehensive, but will emphasize topics since Exam 3

- 1) Multi-stage amplifiers
- 2) Differential amplifiers:
 - -BJT diff amp with R_C
 - -MOS diff amp with R_D
 - -MOS diff amp with active load
- 3) Op Amps
 - -General definitions / characteristics
 - -2-stage MOS op amp

About the final exam

- 4) Low-frequency response
 - -Short-circuit time constant method
 - -Finding Rth for each C
 - -Dominant pole
 - -Overall f_L : combining poles (adding frequencies)
- 5) High-frequency response
 - -Hybrid-pi transistor models
 - -Open-circuit time constant method
 - -Finding Rth for each C
 - -Dominant pole
 - -Overall f_H: combining poles (adding time constants)
 - -Miller effect

From the half-circuit:

$$v_{o2} = -\frac{g_m R_D}{1 + g_m R_S} (-v_{id}/2)$$

$$\frac{v_{o2}}{v_{id}} = \frac{1}{2} \frac{g_m R_D}{1 + g_m R_S}$$

$$A_{dm} = \frac{1}{2} \left(\frac{2 \times 5}{1 + 2 \times 0.5} \right) = \frac{10}{4}$$

$$R_{\rm s} = 0.5 \,\mathrm{k}$$

$$g_m = 2 \text{ mS}$$

From the half-circuit:

$$v_{o2} = -\frac{g_m R_D}{1 + g_m (R_S + 2R_{SS})} (v_{ic})$$

$$A_{cm} = \frac{v_{o2}}{v_{ic}} = -\frac{g_{m}R_{D}}{1 + g_{m}(R_{S} + 2R_{SS})}$$

$$A_{cm} = -\frac{2 \times 5}{1 + 2(0.5 + 200)} = \frac{10}{402}$$

$$R_{\rm S} = 0.5 \, \rm k$$

$$R_{SS} = 0.5 \text{ k}$$

$$R_{SS} = 100 \text{ k}$$

$$g_m = 2 \text{ mS}$$

$$g_m = 2 \text{ mS}$$

$$CMRR = \frac{|A_{dm}|}{|A_{cm}|} = \frac{10/4}{10/402} = \frac{402}{4} \approx 100$$

$$CMRR = 40 \text{ dB}$$

$$A_{dm} = \frac{v_o}{v_{id}} = +g_m (r_{o4} || r_{02})$$

$$A_{dm} = +2(50) = +100$$

$$r_{o} = 100 \text{ k}$$

$$g_m = 2 \text{ mS}$$

$$\omega_L = \frac{1}{R_{th}C}$$

$$\omega_{L} = \frac{1}{R_{th}C_{E}} = \frac{1}{\left(1k \| \left[\frac{r_{\pi} + 200 \| 120 \| 1}{\beta + 1}\right]\right)C_{E}}$$

$$\omega_L \approx \frac{1}{\left(1k \parallel \left[\frac{1+1}{78}\right]\right)C_E}$$
 $\omega_L \approx \frac{1}{\left(1k \parallel 0.026 \text{ k}\right)C_E}$

$$\omega_L \approx \frac{1}{(1 \,\mathrm{k} \,\|\, 0.026 \,\mathrm{k})C_E}$$

$$\omega_L \approx \frac{1}{(26) \times 4 \times 10^{-6}} \approx 10^4$$

$$r_{\pi} = 1 \,\mathrm{k}$$

$$g_{m} = 77 \,\mathrm{mS}$$

$$f_L \approx \frac{10^4}{2\pi} = 1600 \text{ Hz}$$

$$\omega_{C_E} \approx 10^4$$

 $r_{\pi} = 1 \,\mathrm{k}$ $g_{m} = 77 \,\mathrm{mS}$

Let's check the other two poles:

$$\omega_{C_1} = \frac{1}{\left[1 \,\mathrm{k} + \left(200 \,\mathrm{k} \,\|\, 120 \,\mathrm{k} \,\|\, 1\,\,\mathrm{k}\right)\right] \times 10^{-6}} \qquad \omega_{C_1} \approx \frac{1}{\left[2 \,\mathrm{k}\right] \times 10^{-6}} = 500$$

$$\omega_{C_1} \approx \frac{1}{\left[2 \text{ k}\right] \times 10^{-6}} = 500$$

$$\omega_{C_2} = \frac{1}{[2 k + 2 k] \times 10^{-6}} = 250$$

Miller capacitance will probably dominate

$$\tau_{gd} = [1k || (2M || 1M)] C_M + [50k || 50k] C_{gd}$$

$$C_{M} = [1+|A_{v}|]C_{gd} = [1+g_{m}(50 \text{ k} \| 50 \text{ k})]C_{gd}$$

$$C_M = [51]0.1 \times 10^{-12} = 5.1 \times 10^{-12}$$

$$\tau_{gd} = [1000]5.1 \times 10^{-12} + 25000 \times 0.1 \times 10^{-12} = 7.6 \times 10^{-9}$$

$$\omega_H = \frac{1}{\tau_{gd}} = 1.3 \times 10^8$$
 $f_H = \frac{1}{\tau_{gd}} = 21 \times 10^6 \text{ Hz}$

$$C_{gs} = 0.5 \, \text{pF}$$

$$C_{gs} = 0.5 \text{ pF}$$
 $C_{gd} = 0.1 \text{ pF}$
 $C_L = 0.1 \text{ pF}$
 $g_m = 2 \text{ mS}$

$$C_{L} = 0.1 \, \text{pF}$$

$$g_m = 2 \text{ mS}$$