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ECE 255 Spring 2019 

Homework 1 SOLUTIONS 

Due 5:00 PM Monday, Jan 14 in MSEE 180 Dropbox 

 

1) (Review Problem) Consider the voltage source and resistor networks shown in Figure A. 

 

 

	

	

	

	

	

	

	

	

1a) For the circuit shown in Fig A, find the Thevenin equivalent network between node 1 
and ground. 

 
Solution: 

For Rth, we short the 10 V power supply and see   Rth = 70 || 30 = 21kΩ   

Vth is the voltage across the 30 k resistor:  
  
Vth =

30
30+ 70

10 = 3 V  

  

Rth = 21kΩ
Vth = 3 V
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HW1 Solutions (cont.) 
 

1b) For the circuit shown in Fig A, what is the open-circuit voltage between node 1 and 
ground (i.e. voltage on node 1 for circuit shown in figure)? 

 
Solution: 

  
Voc =Vth =

30
30+ 70

10 = 3 V  
  
Voc = 3 V  

 
1c) For the circuit shown in Fig. A, suppose that we connect a load resistor of 21 kΩ 

between node 1 and ground.  What is the voltage across this resistor? 
 
Solution: 

We now have the following circuit: 

 
Voltage division gives: 

  
V = 1.5 V  

 
1d) For the circuit shown in Fig B, what is the current I1?	

Solution: 

The 0.7 V battery puts 0.7 V across the 7.78 k resistor. The current through this resistor is:  

  
I7.78k =

0.7
7.78

= 0.09 mA  .  Since we know the voltage on the top and bottom of the 33 k 

resistor, we can compute the current as 
  
I33k =

4− 0.7
33

= 0.1mA . 

Now apply KCL to the node between the two resistors:    I33k = I7.78k + I1 . 

  I1 = I33k − I7.78k = 0.10− 0.09 = 0.01mA  

  
I1 = 0.01mA  
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HW1 Solutions (cont.) 
2)  (Review Problem) Consider the circuit below 

 

2a) Assume that   R1 = R2 = R3 = R4 = R5 = 1kΩ  and find the Thevenin equivalent 
resistance, 

Req . (Hint: If you see what’s going on, you can solve this problem by 
inspection.) 

 

Solution: 

Because of the symmetry of the circuit, we see that the voltage on each end of   R5  is the 
same, so no current flows through   R5 . We can remove it from the circuit and nothing 
changes.  We now have: 

 

We can now see by inspection that    
Req = R1 + R2( ) || R3 + R4( ) = 2 || 2 = 1kΩ  

  
Req = 1kΩ  
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HW1 Solutions (cont.) 
2b) Assume that   R1 = 2 kΩ  and all other resistors are unchanged. Find the Thevenin 

equivalent resistance, 
Req . 

 
Solution: 
The problem is more complicated now because we have lost the symmetry that simplified 
things in part 2a). The circuit to be analyzed is: 

 

KCL at node A gives: 
  

VA −Vx

R1

+
VA −VB

R5

⎛

⎝⎜
⎞

⎠⎟
+

VA

R2

=
VA −Vx

2
+ VA −VB( ) +VA = 0  

(resistors in k, so currents in mA)) 

      5VA − 2VB =Vx   (1) 

KCL at node B gives:  
  

VB −Vx

R3

+
VB −VA

R5

⎛

⎝⎜
⎞

⎠⎟
+

VB

R4

=VB −Vx + VB −VA( ) +VB = 0  

      3VB −VA =Vx    (2) 

Solve (1) and (2) for: 

  
VA =

2.5
3.5

Vx    
VB = 6

13
Vx  

Solve for 
  
Ix =

VA

R2

+
VB

R4

=
0.38Vx

1
+

0.46Vx

1
= 0.846Vx mA   

Finally, 
  
Rth =

Vx

Ix

= 1.18 kΩ    
  
Rth = 1.18 kΩ  
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HW1 Solutions (cont.) 
 

3) The intrinsic carrier concentration,  ni , is an important parameter for a semiconductor. An 

approximate expression for  ni  is  

  ni = BT 3/2e−EG 2kBT , 

where the temperature, T, is in Kelvin, the bandgap,  EG  in Joules, and 

  kB = 1.38×10−23 J/K  is Boltzmann’s constant. 

3a) Assuming that   B = 4.87 ×1015 cm-3K-3/2  and that   EG = 1.12 eV  for silicon, compute 

 ni  at room temperature (27 oC), -55 oC and +125 oC (the lowest and highest 
temperatures represent the military specification for the range of temperatures over 
which electronics must operate). Note that we are ignoring the small but important 
temperature dependence of the bandgap. 

 

Solution: 

Since  EG  is in electron volts, we should compute  kBT  in electron volts. At 27 oC, 

  T = 273.15+ 27 = 300.15   

  

kBT
q

27 °C( ) = 1.38×10−23 300.15( )
1.6×10−19 = 0.0259   

  

kBT
q

−55 °C( ) = 1.38×10−23 218.15( )
1.6×10−19 = 0.0188  

  

kBT
q

+125 °C( ) = 1.38×10−23 398.15( )
1.6×10−19 = 0.0343 

  ni 27 °C( ) = 4.87 ×1015 300.15( )1.5
e−1.12 0.0259 = 1.02×1010 cm-3  

  ni −55 °C( ) = 1.86×106 cm-3  

  ni +125 °C( ) = 3.2×1012 cm-3  

  

ni −55 °C( ) = 1.86×106 cm-3

ni 27 °C( ) = 1.02×1010 cm-3

ni +125 °C( ) = 3.2×1012 cm-3

 

Note that the intrinsic concentration is very sensitive to temperature. 
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HW1 Solutions (cont.) 
 

3b) For operation at high temperatures, wide bandgap semiconductors are needed.  Repeat 
prob. 3a) for gallium nitride (GaN) assuming that   EG = 3.4 eV and   B = 1.85×1015 cm−3K-3/2  
and that T = +125 oC. 

 
Solution: 

  ni 125 °C( ) = 1.85×1015 398.15( )1.5
e−3.4 0.0343 = 4.65×10−3 cm-3  

  
ni 125 °C( ) = 4.65×10−3 cm-3

 
Note that the intrinsic concentration is very sensitive to bandgap.  Large bandgaps 
give small intrinsic carrier concentrations. 

 
 
4) Consider a Si at two different temperatures: 1) room temperature, 300 K and 2) an elevated 

temperature of 700 K. Assuming that   ni 300 K( ) = 1.0×1010 cm-3  and 

  ni 700 K( ) = 2.9×1016 cm-3 , calculate the equilibrium electron and hole concentrations (n 
and p) for each of the following cases. Assume that the dopants are fully ionized. 

4a) intrinsic material (  N D = N A = 0 ) 
 
Solution: 
Since there are only intrinsic carriers,  n = p = ni  

  

n 300 K( ) = p 300 K( ) = ni 300 K( ) = 1.0×1010 cm-3

n 700 K( ) = p 700 K( ) = ni 700 K( ) = 2.9×1016 cm-3
 

 
4b)   N D = 1.00×1013 cm-3 N A = 0  

 
Solution: 

At 300 K: 

 ni << N D  ,   n 300 K( ) ≈ N D = 1.00×1013 cm-3

  p 300 K( ) ≈ ni
2 300 K( ) n 300 K( ) = 1020 1013 =1.0×107 cm-3  

At 700 K: 

 ni >> N D ,   n 700 K( ) = p 700 K( ) = ni 700 K( ) = 2.9×1016 cm-3
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HW1 Solutions (cont.) 

  

n 300 K( ) ≈1.0×1017 cm-3

p 300 K( ) ≈1.0×107 cm-3

n 700 K( ) = p 700 K( ) = ni 700 K( ) = 2.9×1016 cm-3

 

 
4c)   N D = 5.00×1016 cm-3 N A = 0  

 
Solution: 

At 300 K: 

 ni << N D ,   n 300 K( ) ≈ N D = 5.00×1016 cm-3

 

  
p 300 K( ) ≈ ni

2 300 K( ) n 300 K( ) = 1020 5×1016( ) =2.0×103 cm-3

 
At 700 K: 

 ni < N D , but the intrinsic concentration is not negligible, so we should be more 
careful. As discussed in the notes, assuming space charge neutrality and 
equilibrium, we find (for fully ionized dopants): 

n = ND − NA

2
+ ND − NA

2
⎛
⎝⎜

⎞
⎠⎟

2

+ ni
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

 

Plugging in numbers: 

n = 5 ×10
16 − 0
2

+ 5 ×1016 − 0
2

⎛
⎝⎜

⎞
⎠⎟

2

+ 2.9 ×1016( )2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

= 6.33×1016  

  
p 700 K( ) = ni

2 700 K( ) n 700 K( ) = 2.9×1016( )2
6.33×1016( ) =1.33×1016 cm-3

 
 

  

n 300 K( ) ≈ 5.00×1016 cm-3

p 300 K( ) ≈ 2.00×103 cm-3

n 700 K( ) = 6.33×1016 cm-3

p 700 K( ) = 1.33×1016 cm-3

 

 
4d)   N D = 0 N A = 5.00×1016 cm-3

 
 
Solution: 

This is just the P-type version of the N-type problem, 4c).  No work is necessary, 
the answers are: 
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HW1 Solutions (cont.) 
 

  

p 300 K( ) ≈ 5.00×1016 cm-3

n 300 K( ) ≈ 2.00×103 cm-3

p 700 K( ) = 6.33×1016 cm-3

n 700 K( ) = 1.33×1016 cm-3

 

 
 
4e)   N D = 1.00×1018 cm-3 N A = 3.00×1018 cm-3

 
 
Solution: 
Only the net doping,   N A − N D = 2.00×1018 cm-3 ,	matters. We see that at both 

temperatures,  ni << N A − N D , so the semiconductor is always extrinsic. 
 

  p 300 K( ) ≈ p 700 K( ) ≈ 2.0×1018 cm-3

 
 
At 300 K: 

  
n 300 K( ) ≈ ni

2 300 K( ) p 300 K( ) = 1020 2.0×1018( ) =5.0×101 cm-3  
 
At 700 K 

  
n 700 K( ) ≈ ni

2 700 K( ) p 700 K( ) = 2.9×1016( )2
2.0×1018( ) =4.21×1014 cm-3

 

  

p 300 K( ) ≈ 2.00×1018 cm-3

n 300 K( ) ≈ 5.00×101 cm-3

p 700 K( ) = 2.00×1018 cm-3

n 700 K( ) = 4.21×1014 cm-3

 


