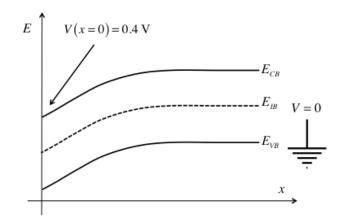
ECE 255 Spring 2019

Homework 2

Due 5:00 PM Tuesday, Jan 22 in MSEE 180 Dropbox


- 1) As shown in the figure below, minority carrier holes are injected into an N-type Si layer of width, W. (We will see later that this can be done with a PN junction.) Assume that $p_n(x=0)=10^{14} \text{ cm}^{-3}$, $p_n(x=W)=0$, $\mu_p=300 \text{ cm}^2/\text{V-s}$, W=100 nm, and that T=300 K. Answer the following questions.
- 1a) Compute the sign and magnitude of the hole current density in A/cm^2 .
- 1b) What is the sign and magnitude of the average hole velocity at x = 0? Hint: The current density is proportional to the average velocity.

- 2) Assuming the linear profile of minority carriers as shown in the figure above, derive an expression for the average time it takes for holes to diffuse across a region of thickness, W. This is called the "transit time," t_t . Hint: Remember that current is charge divide by time, so $I = Q/t_t$, where Q is the total minority carrier hole charge in the N-region.
- 3) The relationship $J = \sigma \mathcal{E}$ is an alternative form of Ohm's law. Show that this is equivalent to the ECE-201 version (V = IR), by considering a uniformly doped, rectangular bar of semiconductor material with length L (along direction of current flow) and cross-sectional area A (perpendicular to current flow). You may assume that the electric field, \mathcal{E} , is uniform along the length of the bar.

HW 2: (continued)

- 4) Assume a silicon resistor uniformly doped N-type at $N_D = 3 \times 10^{17}$ cm⁻³. The temperature is 300 K and the mobility is $\mu_n = 500$ cm²/V-s. The resistor is 10 micrometers (μ m) long. The voltage at x = 0 is 0 V and the voltage at $x = 10 \mu$ m is 1.5 V. Answer the following questions.
 - 4a) What is the average electron velocity in cm/s in the +x direction?
 - 4b) What is the magnitude of the drift current density in A/cm^2 ?
 - 4c) What is the direction of the drift current (+x or -x)?
- 5) Consider the equilibrium energy band diagram shown below. The semiconductor is silicon at 300 K with $n_i = 10^{10}$ cm⁻³. The wafer is doped P-type at $N_A = 10^{18}$ cm⁻³, so that for $x \gg 0$ $p_B = 10^{18}$ cm⁻³. Answer the following questions assuming that the dopants are fully ionized.

- 5a) What is the equilibrium electron density at x = 0?
- 5b) What is the equilibrium hole density at x = 0?
- 5c) What is the space charge density in C/cm³ at x = 0? Be sure to include the sign.

- 6) Consider a PN junction in equilibrium with $N_A = 10^{17}$ cm⁻³ and $N_D = 10^{18}$ cm⁻³ at T = 300 K. Answer the following questions.
 - 6a) If the material is Si with $n_i = 1 \times 10^{10} \text{ cm}^{-3}$, what is the built-in potential, V_{bi} , of the PN junction?
 - 6b) If the material is Si with $n_i = 1 \times 10^{10}$ cm⁻³, but the doping on both sides of the junction is increased by 10X, what is the built-in potential, V_{bi} , of the PN junction?
 - 6c) If the material is GaAs at T = 300 K with $n_i = 2 \times 10^6$ cm⁻³, with $N_A = 10^{17}$ cm⁻³ and $N_D = 10^{18}$ cm⁻³, what is the built-in potential, V_{bi} , of the PN junction?
 - 6d) Compare your answers to the above questions to the band gap of the semiconductor.
- 7) Consider a silicon PN junction with $N_A = 10^{16}$ cm⁻³ and $N_D = 10^{19}$ cm⁻³ at T = 300 K, so that $n_i = 1 \times 10^{10}$ cm⁻³. The thickness of the undepleted N-region is 100 nm and of the undepleted P-region is 200 nm. The electron mobility is 1200 cm²/V-s, and the hole mobility is 70 cm²/V-s. The area of the PN junction is 500 nm X 500 nm. Answer the following questions.
 - 7a) What is the saturation current density, I_s , in A/cm²?
 - 7b) What voltage must be applied so that the diode current is 10^{-12} A?
 - 7c) What voltage must be applied so that the diode current is 10^{-5} A?