ECE 255 Spring 2019

Homework 4

Due 5:00 PM Monday, Feb. 4 in Dropbox

- 1) Consider the circuit shown below with $R_L = 2 k\Omega$, $V_{CC} = 3V$, and $v_s \ll V_{CC}$. In forward bias, the diode can be approximated by $V_D = 0.7V$. Assume T = 300 K so that $V_T = 0.026$ V.
 - a) First, consider the DC operating point. Find the value of the diode current, I_D.
 - b) Next, consider the ac small-signal model. What is the value of r_d at this operating point?
 - c) What is the magnitude of the smallsignal diode current, i_d, in terms of v_s?
 - d) What is the magnitude of the smallsignal voltage across the diode, v_d , in terms of v_s ?

2) Consider an **NPN** transistor with the voltages below applied. Identify the region of operation for each case (Active, saturation, or cut-off).

Case	Emitter	Base	Collector	Region
1	0	+0.7	+1.0	
2	0	+0.7	+0.1	
3	-0.8	0	+3.0	
4	-0.7	0	-0.5	
5	+1.5	+2.2	+3.0	
6	+1.0	0	+3.0	

HW 4 (continued)

3) Consider a **PNP** transistor with the voltages below applied. Identify the region of operation for each case (Active, saturation, or cut-off).

Case	Emitter	Base	Collector	Region
1	0	-0.7	-1.0	
2	0	-0.7	-0.2	
3	+0.7	0	-3.0	
4	+0.7	0	+0.5	
5	+1.5	+0.8	-2.0	
6	-1.0	0	-3.0	

- 4) Consider an NPN transistor in the active region with $V_{BE} = 0.78$ V at $I_C = 6$ mA. Answer the following questions. Assume T = 300 K so that $V_T = 0.026$ V.
 - a) What is the current at $V_{BE} = 0.72$ V?
 - b) What is V_{BE} at $I_C = 6 \,\mu\text{A}$?
- 5) For an NPN transistor in the active region, we measure $I_c = 0.7$ mA and $I_B = 20 \,\mu\text{A}$. Answer the following questions.
 - 5a) What is β ?
 - 5b) What is α ?
 - 5c) What is I_E ?
- 6) For the circuit below, you may also assume that $V_{BE} = 0.7$ V and that all transistors operate in the active mode. The voltages, $V_1 - V_5$, on this figure are voltage probes – places that we want to determine the voltage – they are NOT voltage sources. Answer the following questions:
 - 5a) Assume that $\beta \rightarrow \infty$ (i.e. ignore base currents) and compute the five voltages labeled in the figure. Also, verify that the two transistors are biased in the active mode.
 - 5b) Assume that $\beta = 50$, and compute the five voltages labeled in the figure.

HW4 (continued)

7) Consider the npn BJT circuit shown below, with an ideal current source providing I_B .

For parts a)-c), use $R_C = 12 \text{ k}\Omega$ and assume that the BJT operates in forward active mode.

- a) What is the value of I_C?
- b) What is the value of V_{CE} ?
- c) What is the value of V_{BC} ?

d) In this part only, assume that R_C can be varied. What is the maximum value for R_C such that the transistor remains in forward active mode, i.e. that the B-C junction remains reverse biased?

