ECE 255 Spring 2019

Homework 4

Due 5:00 PM Monday, Feb. 4 in Dropbox

1) Consider the circuit shown below with $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$, and $\mathrm{v}_{\mathrm{s}} \ll \mathrm{V}_{\mathrm{CC}}$. In forward bias, the diode can be approximated by $\mathrm{V}_{\mathrm{D}}=0.7 \mathrm{~V}$. Assume $T=300 \mathrm{~K}$ so that $V_{T}=0.026$ V.
a) First, consider the DC operating point. Find the value of the diode current, I_{D}.
b) Next, consider the ac small-signal model. What is the value of r_{d} at this operating point?
c) What is the magnitude of the smallsignal diode current, i_{d}, in terms of v_{s} ?
d) What is the magnitude of the smallsignal voltage across the diode, v_{d}, in terms of v_{s} ?

2) Consider an NPN transistor with the voltages below applied. Identify the region of operation for each case (Active, saturation, or cut-off).

Case	Emitter	Base	Collector	Region
1	0	+0.7	+1.0	
2	0	+0.7	+0.1	
3	-0.8	0	+3.0	
4	-0.7	0	-0.5	
5	+1.5	+2.2	+3.0	
6	+1.0	0	+3.0	

HW 4 (continued)
3) Consider a PNP transistor with the voltages below applied. Identify the region of operation for each case (Active, saturation, or cut-off).

Case	Emitter	Base	Collector	Region
1	0	-0.7	-1.0	
2	0	-0.7	-0.2	
3	+0.7	0	-3.0	
4	+0.7	0	+0.5	
5	+1.5	+0.8	-2.0	
6	-1.0	0	-3.0	

4) Consider an NPN transistor in the active region with $V_{B E}=0.78 \mathrm{~V}$ at $I_{C}=6 \mathrm{~mA}$. Answer the following questions. Assume $T=300 \mathrm{~K}$ so that $V_{T}=0.026 \mathrm{~V}$.
a) What is the current at $V_{B E}=0.72 \mathrm{~V}$?
b) What is $V_{B E}$ at $I_{C}=6 \mu \mathrm{~A}$?
5) For an NPN transistor in the active region, we measure $I_{C}=0.7 \mathrm{~mA}$ and $I_{B}=20 \mu \mathrm{~A}$. Answer the following questions.

5a) What is β ?
5b) What is α ?
5c) What is I_{E} ?
6) For the circuit below, you may also assume that $V_{B E}=0.7 \mathrm{~V}$ and that all transistors operate in the active mode. The voltages, $\mathrm{V}_{1}-\mathrm{V}_{5}$, on this figure are voltage probes - places that we want to determine the voltage - they are NOT voltage sources. Answer the following questions:

5a) Assume that $\beta \rightarrow \infty$ (i.e. ignore base currents) and compute the five voltages labeled in the figure. Also, verify that the two transistors are biased in the active mode.

5b) Assume that $\beta=50$, and compute the five voltages labeled in the figure.

HW4 (continued)

7) Consider the npn BJT circuit shown below, with an ideal current source providing I_{B}.

For parts a)-c), use $\mathrm{R}_{\mathrm{C}}=12 \mathrm{k} \Omega$ and assume that the BJT operates in forward active mode.
a) What is the value of I_{C} ?
b) What is the value of V_{CE} ?
c) What is the value of $V_{B C}$?
d) In this part only, assume that R_{C} can be varied. What is the maximum value for R_{C} such that the transistor remains in forward active mode, i.e. that the B-C junction remains reverse biased?

