ECE 255 Spring 2019

Homework 6

Due 5:00 PM Monday, Feb. 24 in EE-209 Dropbox
Note: Throughout this assignment, the use of upper and lower case characters in symbols for voltages and currents is consistent with the text and lecture convention.

1) Consider the MOSFET circuit shown below. The MOSFET has $\mathrm{k}_{\mathrm{n}}=2 \mathrm{~mA} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{T}_{\mathrm{n}}}=1 \mathrm{~V}$, and $\lambda=0$. The I-V characteristics and load line corresponding to $R_{D}=0.667 \mathrm{k} \Omega$ and $V_{D D}$ $=9 \mathrm{~V}$ are shown. The point marked "Q" corresponds to $\mathrm{Vgs}_{\mathrm{g}}=0$ (the "signal" component).

a) Find the gate and drain voltages (V_{GS} and $V_{D S}$) at the "Q" point.
b) Calculate the change in value of $v_{D S}$ for $v_{g s}=+0.1 \mathrm{~V}$.
c) What is the voltage gain $\left(\Delta v_{D S} / \Delta v_{G S}\right)$ for this circuit?
d) Consider the transfer curve shown to the right. What are the values of $v_{G S}$ corresponding to points A and B ?
e) Suppose that we apply appropriate V_{GS} to bias the circuit at the Q point from part a), then apply $v_{g s}=v_{s i g} \cos (\omega \mathrm{t})$.

What is the maximum value of $v_{\text {sig }}$ for which the circuit will remain in the "high gain" region (i.e. between points A and B on transfer curve?

HW 6 (continued)
2) Consider a NPN BJT with $\beta=80$ and $V_{A}=40 \mathrm{~V}$. The transistor is biased at $I_{C}=1 \mathrm{~mA}$ and operates at room temperature in the (forward) active region at $\mathrm{V}_{\mathrm{CE}}=2.5 \mathrm{~V}$. For parts a)-d), you should consider the hybrid π model.
a) Find the value of r_{π}.
b) Find the value of g_{m}.
c) Find the value of r_{o}.
d) Find the value of r_{e} (for the T-model)
3) Consider the BJT circuit shown in the figure below. The transistor has $\beta=100$. The value of V_{B} is adjusted such that $I_{B}=0.02 \mathrm{~mA}$ and $V_{B E} \sim 0.7 \mathrm{~V}$. For parts a)-d), $\mathrm{V}_{\mathrm{A}}=0$.
a) Find IC and $V_{\text {CE }}$.
b) What are the values of r_{π} and g_{m} ?
c) Draw a small-signal equivalent circuit for the amplifier, showing V_{b} and V_{ce}.
d) Find the voltage gain, $\mathrm{V}_{\mathrm{ce}} / \mathrm{v}_{\mathrm{b}}$.
e) For this part, assume that $V_{A}=30 \mathrm{~V}$. Find the value of r_{o} and the voltage gain. You should assume that I_{C} and V_{CE} are unchanged.

4) The $I V$ characteristics of an N - and P-MOSFET for the 14 nm technology node are shown on the next page. Note that the NMOS characteristics are shown in the $V_{D S}>0$ region and PMOS characteristics in the $V_{D S}<0$ region (with same magnitudes, but negative values, for V_{GS}). The current is normalized by device width, so your result will be expressed in "per micron." Reading from the graphs as carefully as you can, estimate the average transconductance, g_{m}, for the two cases below:
a) For the N -MOSFET at $V_{D S}=0.7 \mathrm{~V}$ and for $V_{G S}$ between 0.6 and 0.7 V .
b) The corresponding transconductance for the P-MOSFET.

HINT: Note that this is not a square law MOSFET.

HW 6 (continued)

From: S. Natarajan, et al., "A 14nm Logic Technology Featuring 2nd-Generation FinFET Transistors, Air-Gapped Interconnects, Self-Aligned Double Patterning and a 0.0588 um2 SRAM cell size," pp. 70-72. Tech. Digest, Intern. Electron Dev. Mtg, Dec. 2014.
5) An enhancement-mode PMOS transistor operating in saturation has ${ }_{p} C_{o x}=250 \quad \mathrm{~A} / \mathrm{V}^{2}$ and $V_{t p}=0.5 \mathrm{~V}$. The channel length is $L=0.5 \mathrm{~m}$
a) Find the value of W that produces $g_{m}=2 \mathrm{~mA} / \mathrm{V}^{2}$ at $I_{D}=0.5 \mathrm{~mA}$.
b) Find the value of $V_{S G}$ corresponding to this bias point.
6) Consider the MOSFET amplifier shown in the figure at the right. Assume a transistor with
$k_{n}=5 \mathrm{~mA} / \mathrm{V}^{2}$ and $V_{t n}=0.4 \mathrm{~V}$.
Also assume that $V_{G S}=0.6 \mathrm{~V}$, $V_{D D}=1.8 \mathrm{~V}$, and $R_{D}=10 \mathrm{k}$.
Answer the following questions.
a) Compute I_{D} and $V_{D S}$
b) Calculate g_{m}
c) Calculate the voltage gain
 ($v_{d s} / V_{g s}$)
d) If $=0.1 \mathrm{~V}^{-1}$, find r_{o} and the voltage gain.

HW 6 (continued)
7) Consider the amplifier shown below. All of the capacitors are large - you may assume that they are short circuits to the ac signals and open circuits for dc. The transistor has $k_{n}=4 \mathrm{~mA} / \mathrm{V}^{2}, V_{t n}=1 \mathrm{~V}$ and $V_{A}=100 \mathrm{~V}$. Also assume that $V_{D D}=1.8 \mathrm{~V}$, and $R_{D}=10 \mathrm{k}$. Answer the following questions.
a) Show that $V_{G S}=1.5 \mathrm{~V}, I_{D}=0.5 \mathrm{~mA}$ and that $V_{D}=7.0 \mathrm{~V}$
b) Find g_{m} and r_{o}
c) Draw the complete small signal equivalent circuit assuming that all capacitors are short circuits at the signal frequency.
d) Find $R_{i n} \cdot{ }_{g s} /{ }_{s i g}, \quad{ }_{o} /{ }_{g s}$, and ${ }_{o} /{ }_{s i g}$

