ECE-305: Spring 2018

Carrier Properties

Pierret, Semiconductor Device Fundamentals (SDF) Chapter 2 (pp. 22-49)

Professor Peter Bermel Electrical and Computer Engineering Purdue University, West Lafayette, IN USA <u>pbermel@purdue.edu</u>

outline

- 1. Electrons and Holes
- 2. Intrinsic carriers
- 3. Doping
- 4. Density of States
- 5. Carrier Distributions

Two Types of Carriers: Electrons and Holes

Electrons in conduction band can move
 Holes (absence of electrons) in valence band can move
 Electrons and holes can recombine

silicon energy levels \rightarrow energy bands

silicon energy levels \rightarrow energy bands

1/16/2018

Bermel ECE 305 S18

energy bands versus atomic separation

Bermel ECE 305 S18

Conduction and valence bands

outline

- 1. Electrons and Holes
- 2. Intrinsic carriers
- 3. Doping
- 4. Density of States
- 5. Carrier Distributions

In pure semiconductors, only free carriers matter

Bermel ECE 305 S18

Why is the current so low ...

$$n_i$$
 (Si) = 1×10¹⁰ cm⁻³....E_G = 1.1eV
 n_i (Ge) = 1×10¹³ cm⁻³...E_G = 0.66 eV
 n_i (GaAs) = 1×10⁶ cm⁻³..E_G = 1.42 eV

$$N_{atoms} = N_{atoms} = 5 \times 10^{22} \text{ cm}^{-3}$$

bonds/atom = 4
$$N_{total} = 2 \times 10^{23} \text{ cm}^{-3}$$

Only 1 out of 20 trillion electrons in Silicon are free to move!

1/16/2018

Bermel ECE 305 S18

outline

- 1. Electrons and Holes
- 2. Intrinsic carriers
- 3. Doping
- 4. Density of States
- 5. Carrier Distributions

doping

Gallium or boron

Phosphorus or Arsenic

Simplified Planar View of Atoms

Donor Atoms

II	III	IV	V	VI
4	5	6	7	8
Be	B	C	N	0
12	13	14	15	16
Mg	Al	Si	P	S
30	31	32	33	34
Zn	Ga	Ge	As	Se
48	49	50	51	52
Cd	In	Sn	Sb	Te
80	81	82	83	84
Hg	Tl	Pb	Bi	Po

Even with donors, material is charge neutral

Bermel ECE 305 S18

Donor Atoms in H₂-analogy

Bermel ECE 305 S18

n-type doping

"Ionized donor"

 $N_D^+ \approx n$

Phosphorus or Arsenic

energy band view (n-type)

p-type doping

Gallium or boron

Acceptor Atoms

II	III	IV	V	VI
4	5	6	7	8
Be	B	C	N	0
12	13	14	15	16
Mg	Al	Si	P	S
30	31	32	33	34
Zn	Ga	Ge	As	Se
	1			
48	49	50	51	52
Cd	In	Sn	Sb	Te

Even with acceptor, material is charge neutral

Bermel ECE 305 S18

Characteristics of Acceptor Atoms

p-type doping

Gallium or boron

p-type doping

Ionized acceptor

 $N_A^- \approx p$

Gallium or boron

energy band view (p-type)

1/16/2018

Bermel ECE 305 S18

Temperature-dependent ionization

Carrier concentration vs. temperature

Amphoteric Dopants

31

outline

- 1. Electrons and Holes
- 2. Intrinsic carriers
- 3. Doping
- 4. Density of States
- 5. Carrier Distributions

DOS

 $4N_a$ states / band

$$N_a = 5 \ge 10^{22} \ /\text{cm}^3$$

How are the energy levels distributed with the bands?

density-of-states

Number of states per unit energy per unit volume. Units: (J-m³)⁻¹ g(E)dE

Number of states in an energy range, dE, per m³.

DOS

density of states

outline

- 1. Electrons and Holes
- 2. Intrinsic carriers
- 3. Doping
- 4. Density of States
- 5. Carrier Distributions

Fermi function

Analogy with stadium ...

40

Floating around in the conduction band

$$g_{\nu}(E) = \frac{m_h^2 \sqrt{2m_h^2(E_V - E)}}{\pi^2 \hbar^3}$$

Bermel ECE 305 S18

Density of States

Distribution Functions

electrons and holes

These states are way below the Fermi level.

conduction band

valence band

temperature dependence of intrinsic density

Carrier Distribution

concentration

$$n = \int_{E_c}^{E_{top}} g_c(E) f(E) dE$$

$$g_c(E) f(E)$$

$$g_v(E) [1 - f(E)]$$

$$p = \int_{E_{bot}}^{E_v} g_v(E) [1 - f(E)] dE$$

Conclusions

- Two types of carriers, electrons and holes, move within conduction and valence bands, respectively
- Temperature creates intrinsic carriers, but extrinsic doping is main control knob in semiconductors
- Doping affects the Fermi level for both donor-like (ntype) and acceptor-like (p-type) dopants
- The density of states increases with distance away from the conduction band minimum and valence band maximum
- The Fermi-Dirac distribution $f(E) = \frac{1}{1 + e^{(E-E_F)/k_BT}}$ reflects the Pauli exclusion principle + thermal spreading
- Combining these factors yields carrier distributions for semiconductors in equilibrium