ECE-305: Spring 2018

Carrier Currents + Band Structures

Pierret, Semiconductor Device Fundamentals (SDF) Chapter 3 (pp. 75-104)

Professor Zhihong Chen Electrical and Computer Engineering Purdue University, West Lafayette, IN USA

pbermel@purdue.edu

outline

- 1. Carrier diffusion
- 2. Diffusion current
- 3. Energy band diagrams
- 4. Junction formation
- 5. Poisson's equation

The Essence of Diffusion

$$t_1 < t_2 < t_3$$

Diffusion distance

Calculating Diffusion Flux ...

$$\mathcal{F} = \left[+\frac{1}{2} \left(\frac{p(0) + p(0) - \frac{dp}{dx}l}{2} \right) \times l - \frac{1}{2} \left(\frac{p(0) + p(0) + \frac{dp}{dx}l}{2} \times l \right) \right] / \frac{l}{\upsilon_{th}}$$

$$= -\frac{l\upsilon}{2}\frac{dp}{dx} \equiv -D\frac{dp}{dx}$$

Bermel ECE 305 S18 (presented by Dr. Chen)

outline

- 1. Carrier diffusion
- 2. Diffusion current
- 3. Energy band diagrams
- 4. Junction formation
- 5. Poisson's equation

The diffusion current

diffusion current

diffusion current

1/30/18

diffusion current

p(x)

Question: What direction is the electric field?

- a) To the right
- b) To the left

There must be a drift current that exactly cancels the diffusion current.

Flux and Current

$$J_{p,diff} = +q \times \mathcal{F}_{p} = +q \times \left(-D_{p} \frac{dp}{dx}\right) = -qD_{p} \frac{dp}{dx}$$

$$J_{n,diff} = -q \times \mathcal{F}_{n} = -q \times \left(-D_{n} \frac{dn}{dx}\right) = qD_{n} \frac{dn}{dx}$$

$$\vec{\mathcal{F}} = -D\vec{\nabla}n$$

 $\vec{\mathcal{F}} = -D\vec{\nabla}n$ Fick's Law of Diffusion (1855)

Einstein Relationship at Equilibrium ...

$$\frac{D}{\mu} = \frac{\frac{l\upsilon}{2}}{\frac{q\tau}{m_0^*}} = \frac{\frac{(\upsilon\tau)\times\upsilon}{2}}{\frac{q\tau}{m_0^*}} = \frac{\frac{1}{2}m_0^*\upsilon^2}{q} = \frac{k_BT}{q}$$

... because scattering dominates both phenomena

drift- diffusion equation

$$\mu_p = \frac{q\tau}{m_p^*}$$

$$\mu_n = \frac{q\tau}{m_n^*}$$

$$D_p = \frac{\upsilon_{Tp} \ell_p}{2}$$

$$D_n = \frac{\upsilon_{Tn} \ell_n}{2}$$

$$\vec{J}_p = \vec{J}_{p-drift} + \vec{J}_{p-diff} = pq\mu_p \vec{\mathcal{E}} - qD_p \vec{\nabla} p$$

current = drift current + diffusion current

$$\vec{J}_n = \vec{J}_{n-drift} + \vec{J}_{n-diff} = nq\mu_n \vec{\mathcal{E}} + qD_n \vec{\nabla} n$$

total current = electron current + hole current

$$\vec{J} = \vec{J}_p + \vec{J}_n$$

$$D_p/\mu_p = D_n/\mu_n = k_B T/q$$

outline

- 1. Carrier diffusion
- 2. Diffusion current
- 3. Energy band diagrams
- 4. Junction formation
- 5. Poisson's equation

Kinetic and potential energy

- Energy bands are not constant in electric fields! Instead, they change as a function of position
- We need energy equal to the band gap to break bonds and excite carriers to the conduction band.
- If we only impart enough energy to promote an electron carrier, then it simply sits in the conduction band.
- Extra energy (kinetic energy) is needed to allow carriers to move. 16

Electrostatic potential

The potential energy of a charged electron: -qV

But we just defined: $P.E. = E_C - E_{ref}$

Electrostatic potential:

Electric field within the semicondcutor

Electrostatic potential:

Electric field:

$$E = -\nabla V$$

$$= \frac{1}{q} \frac{dE_C}{dx} = \frac{1}{q} \frac{dE_V}{dx} = \frac{1}{q} \frac{dE_i}{dx}$$

Observe how electric field changes with band bending:

*Check ex. 3.2 on p. 92

Sketch:

- Electrostatic potential
- Electric field
- Electron density
- Hole density

Very important point:

The Fermi level is constant in equilibrium.

Electron density

Kroemer's lemma of proven ignorance

"Whenever I teach my semiconductor device physics course, one of the central messages I try to get across early is the importance of energy band diagrams. I often put this in the form of "Kroemer's lemma of proven ignorance":

If, in discussing a semiconductor problem, you cannot draw an **Energy Band Diagram**, this shows that you don't know what you are talking about.

Corollary:

(Nobel Prize Lecture, 2000)

If you can draw one, but don't, then your audience won't know what you are talking about.

draw the energy band diagram

outline

- 1. Carrier diffusion
- 2. Diffusion current
- 3. Energy band diagrams
- 4. Junction formation
- 5. Poisson's equation

Formation of a Junction

Kinetic and Potential Energies

energy

Band-diagram to Potential

Joules vs. eV

outline

- 1. Carrier diffusion
- 2. Diffusion current
- 3. Energy band diagrams
- 4. Junction formation
- 5. Poisson's equation

Potential, Electric Field, Band diagram

$$\mathcal{E}(x) = -\frac{dV}{dx} = \frac{1}{q} \frac{dE_c}{dx} = \frac{1}{q} \frac{dE_v}{dx} = \frac{1}{q} \frac{dE_i}{dx}$$

Interface Boundary Conditions

$$\underline{D}_1 = \kappa_1 \varepsilon_0 \mathcal{E}(0^-) = \kappa_2 \varepsilon_0 \mathcal{E}(0^-) = \underline{D}_2$$

$$\mathcal{E}(0^{-}) = \frac{\kappa_2}{\kappa_1} \mathcal{E}(0^{+})$$

Displacement is continuous across the interface, field need not be ..

Potential, Field, Charge

Poisson Equation

$$\nabla \cdot D = q\rho$$

In 1D,
$$\kappa_S \varepsilon_0 \frac{d\mathcal{E}}{dx} = q \rho(x) \equiv q \left(p - n + N_D^+ - N_A^- \right)$$

$$\kappa_{S} \varepsilon_{0} \frac{d^{2}V}{dx^{2}} = -q \left(p - n + N_{D}^{+} - N_{A}^{-} \right)$$

conclusions

- Energy band diagrams (as a function of position) help us calculate many key quantities of importance, such as electrostatic potential, electric field, and carrier concentration
- They are based on the Poisson equation, $\nabla \cdot D = q\rho$
- Can be combined with the depletion approximation to calculate the behavior at the boundary of two materials with different doping in equilibrium
- They will be crucial for the remainder of the class; we'll come back to them many times