ECE-305: Spring 2018

Carrier Currents + Band Structures

Pierret, Semiconductor Device Fundamentals (SDF) Chapter 3 (pp. 75-104)

Professor Zhihong Chen
Electrical and Computer Engineering Purdue University, West Lafayette, IN USA
pbermel@purdue.edu

outline

1. Carrier diffusion

2. Diffusion current
3. Energy band diagrams
4. Junction formation
5. Poisson's equation

Doping by Hot Probes ...
Energetic holes diffusing away

Hall effect ...
Energetic electrons diffusing away

N-type

The Essence of Diffusion

A.

$$
\frac{d \rho}{d t}=D \nabla^{2} \rho
$$

$$
t_{1}<t_{2}<t_{3}
$$

Diffusion distance
$x \sim \sqrt{D t}$

X

Calculating Diffusion Flux ...

outline

1. Carrier diffusion

2. Diffusion current
3. Energy band diagrams
4. Junction formation
5. Poisson's equation

The diffusion current

diffusion current

diffusion current

diffusion current

Question: What direction is the electric field?
a) To the right
b) To the left

Flux and Current

$$
\begin{aligned}
& J_{p, \text { diff }}=+q \times \mathscr{F}_{p}=+q \times\left(-D_{p} \frac{d p}{d x}\right)=-q D_{p} \frac{d p}{d x} \\
& J_{n, \text { diff }}=-q \times \mathscr{F}_{n}=-q \times\left(-D_{n} \frac{d n}{d x}\right)=q D_{n} \frac{d n}{d x}
\end{aligned}
$$

$$
\overrightarrow{\mathcal{F}}=-D \vec{\nabla} n
$$

Fick's Law of Diffusion (1855)

Einstein Relationship at Equilibrium ...

$$
\frac{D}{\mu}=\frac{\frac{l v}{2}}{\frac{q \tau}{m_{0}^{*}}}=\frac{\frac{(v \tau) \times v}{2}}{\frac{q \tau}{m_{0}^{*}}}=\frac{\frac{1}{2} m_{0}^{*} v^{2}}{q}=\frac{k_{B} T}{q}
$$

... because scattering dominates both phenomena

drift- diffusion equation

$$
\begin{aligned}
& \mu_{p}=\frac{q \tau}{m_{p}^{*}} \\
& \mu_{n}=\frac{q \tau}{m_{n}^{*}} \\
& D_{p}=\frac{v_{T_{p}} \ell_{p}}{2}
\end{aligned}
$$

$$
\vec{J}_{p}=\vec{J}_{p-d r i f t}+\vec{J}_{p-d i f f}=p q \mu_{p} \vec{E}-q D_{p} \vec{\nabla} p
$$

$$
\text { current }=\text { drift current }+ \text { diffusion current }
$$

$$
\vec{J}_{n}=\vec{J}_{n-\text {-difft }}+\vec{J}_{n-\text { diff }}=n q \mu_{n} \vec{E}+q D_{n} \vec{\nabla}_{n}
$$

total current $=$ electron current + hole current

$$
\vec{J}=\vec{J}_{p}+\vec{J}_{n}
$$

$$
D_{n}=\frac{v_{v_{n}} \ell_{n}}{2}
$$

$$
D_{p} / \mu_{p}=D_{n} / \mu_{n}=k_{B} T / q
$$

outline

1. Carrier diffusion

2. Diffusion current
3. Energy band diagrams
4. Junction formation
5. Poisson's equation

band bending

Kinetic and potential energy

- Energy bands are not constant in electric fields! Instead, they change as a function of position
- We need energy equal to the band gap to break bonds and excite carriers to the conduction band.
- If we only impart enough energy to promote an electron carrier, then it simply sits in the conduction band.
- Extra energy (kinetic energy) is needed to allow carriers to move.

Electrostatic potential

The potential energy of a charged electron: $-q V$
But we just defined: $\quad P . E .=E_{C}-E_{\text {ref }}$

$$
J V=-\frac{1}{q}\left(E_{C}-E_{r e f}\right)
$$

Electrostatic potential:

Electric field within the semicondcutor

Electrostatic potential:

Observe how electric field changes with band bending:
https://en.wikipedia.org/wiki/Depletion_region\#/media/File:PN_band.gif

band bending

band bending

Sketch:

- Electrostatic potential
- Electric field
- Electron density
- Hole density

Very important point:

The Fermi level is constant in equilibrium.

Electron density

band bending

band bending

band bending

band bending

Kroemer's lemma of proven ignorance

"Whenever I teach my semiconductor device physics course, one of the central messages I try to get across early is the importance of energy band diagrams. I often put this in the form of "Kroemer's lemma of proven ignorance":

If, in discussing a semiconductor problem, you cannot draw an Energy Band Diagram, this shows that you don't know what you are talking about.

Corollary:
(Nobel Prize Lecture, 2000)
If you can draw one, but don't, then your audience won't know what you are talking about.

draw the energy band diagram

outline

1. Carrier diffusion

2. Diffusion current
3. Energy band diagrams
4. Junction formation
5. Poisson's equation

Formation of a Junction

Kinetic and Potential Energies

energy

Band-diagram to Potential

Joules vs. eV

outline

1. Carrier diffusion

2. Diffusion current
3. Energy band diagrams
4. Junction formation
5. Poisson's equation

Potential, Electric Field, Band diagram

$$
\begin{aligned}
& V(x) \uparrow \\
& \mathcal{E}(x) \hat{}=-\frac{d V}{d x} \\
& \mathcal{E}(x)=-\frac{d V}{d x}=\frac{1}{q} \frac{d E_{c}}{d x}=\frac{1}{q} \frac{d E_{v}}{d x}=\frac{1}{q} \frac{d E_{i}}{d x}
\end{aligned}
$$

Interface Boundary Conditions

$$
\begin{aligned}
& \text { } \underset{\mathrm{E}=\left(\mathrm{D} / \mathrm{k} \varepsilon_{0}\right)}{\mathrm{D}} \\
& D_{1}=\kappa_{1} \varepsilon_{0} \mathcal{E}\left(0^{-}\right)=\kappa_{2} \varepsilon_{0} \mathcal{E}\left(0^{-}\right)=D_{2} \\
& \mathcal{E}\left(0^{-}\right)=\frac{\kappa_{2}}{\kappa_{1}} \mathcal{E}\left(0^{+}\right)
\end{aligned}
$$

Displacement is continuous across the interface, field need not be ..

Potential, Field, Charge

Poisson Equation

$$
\nabla \cdot D=q \rho
$$

$\ln 1 \mathrm{D}, \quad \kappa_{S} \varepsilon_{0} \frac{d \mathcal{E}}{d x}=q \rho(x) \equiv q\left(p-n+N_{D}^{+}-N_{A}^{-}\right)$

$$
\kappa_{S} \varepsilon_{0} \frac{d^{2} V}{d x^{2}}=-q\left(p-n+N_{D}^{+}-N_{A}^{-}\right)
$$

conclusions

- Energy band diagrams (as a function of position) help us calculate many key quantities of importance, such as electrostatic potential, electric field, and carrier concentration
- They are based on the Poisson equation, $\nabla \cdot D=q \rho$
- Can be combined with the depletion approximation to calculate the behavior at the boundary of two materials with different doping in equilibrium
- They will be crucial for the remainder of the class; we'll come back to them many times

