ECE 305: Spring 2018

Minority Carrier Diffusion Equation 1

Pierret, Semiconductor Device Fundamentals (SDF)
Chapter 3 (pp. 122-138)

Professor Peter Bermel
Electrical and Computer Engineering
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where is the Fermi level?

Before we created the excess holes
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turn the light on: “excess carriers”

An=10" cm”
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quasi-Fermi levels

p=10" cm”

The QFL’s are split

in equilibrium: £, =F =E,

_ n.e(EF—Ei)/kBT

_ n-e(El-—EF)/kBT

F,—E;)/kgT
n=ne" ik

1

F =E,

n

p= n.e(Ei—Fp)/kBT

F,<E,
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equilibrium vs. non-equilibrium

equilibrium non-equilibrium

Ep—E; ) kgT E—E. ) kT
n, :nl.e( rEi) ks n = n etk

l

(E;—Ep)/kyT

Do = 1€ p= nl.e(

E,-F, ) [kgT

2 2
nypy =1, np Lin;
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fO - 14 e(E—EF)/kBT
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turn the light off
An=10" cm”
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Question: What happens?

Answer: The system returns

to equilibrium.

How long does it take?

A time known as the “minority

carrier lifetime”. 7, sec
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current and QFL’s

- ~ _ _ E,~F,) [kyT
J,=pquE -qD Vp=puV(F, /)| p= n,-e( )

jn = nq,un? + qDﬁn = n,uﬁ(Fn/q) 9= n-e(Ea_Ei)/kBT

dp _ (E~F,)[ksT y 1 (dE,- B dF;aj P (dEi _ dF}?j

— =n.e =
dc k,T\ dx dx/) k,T\dx dx
dE.

—L=gF
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Minority Carrier Diffusion Equation

VOD:q(p—n+Ng—NAf)
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minority carrier diffusion equation
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(hole continuity equation)

(1D, generation by light)

(low-level injection, no
electric field)

(D, spatially uniform)



Various approximations ...

recombination

Time dependence _
\ generation
| /
2
8(Anp) 5 0"An, An, ‘g
ot Yot o, 7
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T

density gradient
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e-band diagram
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How to solve (some) Exam 2 problems

Step 1: From material information (semiconductor, doping, etc.), calculate
carrier densities, Fermi level, etc. Start with the majority carriers, p = N, —

Np, orn = Np — N,. Then get the other carrier from np = n?

Step 2: Use band-diagram to calculate potential profile, electric field, E =
dE./dx,or E = —dV /dx, and kseq p = dE /dx, etc. For homogenous
semiconductor with a battery attached, E =V /L.

Step 3: Decide if this is drift-related problem (resistivity, velocity, mobility,
etc.), or a diffusion related problem (light turning on-off, etc.)

Step 4A: For a drift-problem use p~! = qnu,E + qpu,E . For u, you may

be given a number, or table, or diffusion coefficient, etc. Learn how to read
such a table.

Step 4B: For a diffusion problem, read carefully for clues to simplify the
minority carrier equation.
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How to solve equations

Step 4B: Two general types of minority diffusion problem.
i) Determine if electron or the hole is the minority carrier.

if) If holes are the minority carriers, write the equation:

A ‘Ap A
o _, dl Ap

Ot P dx? T,

GL

iii) If steady-state, drop the time-derivative. If transient, keep the time
derivative. If spatially uniform, drop the diffusion term. Without light,
drop the generation term. If the region is very short, drop the
recombination term. Choose the solutions from the following table.

iv) Use the boundary conditions to complete solution.
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How to solve equations

2
aAp:D dAp_Ap+

G
Ot Pdx? 7, t
Transient Steady State
— =6, ——, _ p p
luti solution
solution x =
_t Ap — Ae Lp + Be Lp +GLTp
Ap - GLTp + Be Tp
If L < Lp,

Boundary condition for B:
Concentration before light was
turned on?

2/6/18

Ap = A+ Bx + G 1y

BC to determine A and B:
Concentration at leftmost
and rightmost points
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Example #1: Reading the problem

For all the following problems, assume p-type silicon at room temperature, uniformly
doped with N, =10" em™ p_ =300 cm?/V sec, 7, =107 s. From these numbers, we find:

D, = Kyl u =78cem/s [ L =Dt =279 um ]
q

Step 1: Determine carrier densities.

a) The majority carrier is ?

b) the majority carrier concentration is?

c) The minority carrier concentration is?

d) How did they get the diffusion coefficient?
e) Special words: uniformly doped.
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Example #1: determining minority carriers

P-type / in equilibrium

n
n,=—=10" cm”
Po
EC
E oo
EF
E,
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(E;—Ep)/ksT

Py =ne

1017 _ 1010 e(Ei_EF)/kBT

E.=E —-041eV
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example #1: P-type sample in uniform injection

Steady-state, uniform generation, no spatial variation

Solve for An and for the QFL’s.
1) Simplify the MCDE

2) Solve the MCDE
3) Deduce F, from An

2/6/18 Bermel ECE 305 S18
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Example #1: Solution

P-type / out of equilibrium F =E —041eV
2
n, = L -10° cm™ n~An= nie(F,,—E,-)/kBT
Po
EC 1014 _ 1010 e(El_Ei)/kBT
L,
Ei ——————————
F F=FE +024¢eV
E, »
Py = 1017 Cm'3

Steady-state, uniform generation, no spatial variation
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Example #1: Solution

Steady-state, uniform generation, no spatial variation
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Example #2

Now turn off the light.
Transient, no generation, no spatial variation

iii) Which approximate equation should | choose?

O R d?An A
at_GL Tp O:Dp—2_|_GL__p
, dx T
solution _ p
t Solution:
— T _x x
i = Gpn, R BE Ap = Ae Ip + Be Lo +G; 1,
iv) What is my boundary condition: Gy
Just before, light was turned on for a
long-time, before it is turned off. L

An(07) = G, t,, = An(0%)
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Example 2A: Transient, No lllumination

(uniform)

on 1

az_v.JN—rN+gN Jy=qnuyE+qD,Vn
q

o(i, + An) _ An

Acceptor doped
ot T,
) | (uniform) An
T
5:_/.JP_FP+gp J, =apu,E—qD,Vp
q >
o oA A time
(%ﬁt p) -2 Majority carrier
T

p

VeD=q(p-n+Ny—N,)=q(p,+An—n,—Ap+N,—-N,)=0

2/6/18 Bermel ECE 305 S8 25



Example 2B: Transient, Uniform lllumination

S (uniform)
a_’::;V/JN—rN+gN Jy=qnu,E+qD,Vn ‘l“l“l“l“l"l'
1

o, + A A
(i/oat n) :__”+G Acceptor doped
T

n

5 | (uniform)
p B —
5—;%‘%—’“8;) J, =qpu,E—qDpVp

o(p,+A A
(A +4p) _ S e, Majority carrier
ot T,

VOD:q(p—n+Ng—N;)zq(pO+An—no—Ap+Nl+)—NAf)=O
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Example 2 Summary Analytical solutions

% = lV oJ,—r,tgy An I\ An(x,t)= An(O)e%?
q

>

Jy=qnu, E+qD,Vn time

op -1
=—VeJ, —r, +
ot g p TpT&p X

J,=qpu,E—qD,Vp An

Wil
1

VeD=g(p-n+N,-N,) Mn(x,1) = Gr, (1€ " )

time
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Example #3: One-sided Carrier Diffusion

Steady state, no generation/recombination

0

An(x', t)

‘_ 1
P

Metal contact

0
%_q dx /% 2
d'n
> 0=D,—
dn >
Jqun/E+qDN—
de
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Example 3B: One-sided carrier diffusion
Long sample (steady state)

Steady-state, sample long compared to the diffusion length.
l.e., a short diffusion length

Ap(x=0) fixed

1) Simplify the MCDE ,
2) Solve the MCDE a@% D ddxﬁp . ip .
3) Deduce F, from Ap P
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Example 3B: One-sided carrier diffusion
Long sample (steady state)

(Steady-state, sample long compared to the diffusion
Iength.[No generation.] An(x=0)=10" cm” fixed

Step 3) What type of problems are we talking about?

Step 4B ) Key words: steady-state, without light, long device
JAp _D d’Ap _Ap

Ot Podx’ T,
iii) Which approximate equation should | choose:

i) If | write +G, for MCDE, would | be right?

0An _ . _An d?An Ap
t Ip t p dx? g Tp
solution An = G;7,, + Be ™ solution Ap — Ae Lp + Be Ip +G; T,

2/6/18 Bermel ECE 305 S18 4



Example 3B: One-sided carrier diffusion
Long sample (steady state)

An(O) Ln = Dnz-n <<L

x=0 x=L=200 um

Steady-state, sample long compared to the diffusion length.
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Example 3B: One-sided carrier diffusion
Long sample (steady state)

Steady-state,[sample IS S micron Iong} No generation.

An(x =5 ,um) =0

Which approximate equation should | choose:

t

J0An _ An

— =0, ——, solution An = G,7,, + Be
ot Tp
d?An Ap . - =
0=Dy, —+ G, —— solution Ap =Ae 'p+Be v +Grt
p

or Ap = A+Bx + 677 LK Lp
What are my boundary conditions?
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Example 3B: One-sided carrier diffusion
Long sample (steady state)

An(x = O) =10 cm”

—

An(x >> LD)zO

An(x)zAx+B

An(x=0)=10" cm™ [An(x)—An(O)(l—%)}

An(sz)zO

2/6/18 Bermel ECE 305 S18
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Example 3C: One-sided carrier diffusion
Intermediate sample (steady state)

Steady-state, sample is 30 micrometers long. No generation.

: O An d*An A
An(x=0)=10"% cm> fix —=D ——+G
( ) ed Ot P dx? T, L

An(x=30 ym)=0

oszd;Azn—Am
1) Simplify the MCDE Thn My L,0yDy,
2) Solve the MCDE '
3) Deduce F, from Ap L =28 ;m L= 30 m
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Example 3C: One-sided carrier diffusion
Intermediate sample (steady state)

Steady-state, sample is 30 micrometers long. No generation.

An(x=0)=10" ecm™ fixed d’An An _

0
dx* L,

An(x =30 ym)=0
Al’l(x) = A 4 Bt

An(0)=A+B=10"
1) Simplify the MCDE

2) Solve the MCDE An(L)=de M + Be™' =0
3) Deduce F, from Ap
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Example 3C: One-sided carrier diffusion
Intermediate sample (steady state)

An(O) L ={Drzt [IL

el

An(x)

x=0 x=1L

Steady-state, sample neither long nor short compared to the
diffusion length.
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Example #3 summary: One-sided carrier diffusion

Length scale Solution type

Long (L > Lp) Decaying exponentials

Short (L < Lp) Linear

Intermediate (L ~ Lp) Hyperbolic functions
Notes:

L is length of region where MCDE applies
Lp = \/DppTny is the diffusion length for carriers
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conclusions
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—

I LA
The continuity equation 9 —q

ensures consistency of current & carrier conc.

Recombination and generation caused by multiple
processes, which can be described simply

Quasi-Fermi level splitting is associated with the resulting
deviations from equilibrium

We will often be using minority carrier diffusion equation
to understand the mechanics of carrier transport in
electronic devices. Review the problem carefully to see if
the assumption of minority carrier transport is satisfied.

Divide all complex problems into solvable parts, solve the
parts sequentially and then put the partial solutions back
by using proper boundary conditions to arrive at the
complete solution.
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