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current challenges in device fabrication

Smaller, Faster, Cheaper, Over: The Future of Computer Chips

By JOHN MARKOFF 3EPT. 26, 2015

Max Shulaker, a sraduate student at Stanford, working in 2011 on a new kind of semiconductor circuit. As chips
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http://www.nytimes.com/2015/09/27 /technology/smaller-faster-cheaper-over-the-future-
of-computer-chips.html?ref=technology& r=0
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integrated circuit resistors

N-type
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Integrated circuit resistors

1) Oxidize
2) Coat with resist

resist

SiO,

P-Si
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Integrated circuit resistors

1) Oxidize
2) Coat with resist

3) Expose light
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Integrated circuit resistors

1) Oxidize
2) Coat with resist

3) Expose
4) Develop

esis fonns

SiO,

P-Si
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Integrated circuit resistors

1
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Oxidize 5) Etch
Coat with resist
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SiO,

P-Si
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Integrated circuit resistors

1) Oxidize 5) Etch
2) Coat with resist 6) Strip resist
3) Expose
4) Develop
SiO,

P-Si
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Integrated circuit resistors

1) Oxidize 5) Etch
2) Coat with resist 6) Strip resist
3) Expose 7) Dope
4) Develop ||
P+
SiO, vvvvvllvvvvv
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P-Si g
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Integrated circuit resistors

1) Oxidize 5) Etch
2) Coat with resist 6) Strip resist
3) Expose 7) Dope
4) Develop 8) Anneal and Oxidize
SiO,
o
t S
L
P-Si
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Integrated circuit resistors

1) Oxidize 5) Etch 9) Open contacts
2) Coat with resist 6) Strip resist
3) Expose 7) Dope
4) Develop 8) Anneal/Oxidize
SiO,
o
[
L
P-Si
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Integrated circuit resistors

1) Oxidize 5) Etch 9) Open contacts
2) Coat with resist 6) Strip resist 10) Deposit metal
3) Expose 7) Dope pattern, etch
4) Develop 8) Anneal/Oxidize
L
i,  »
t
P-S; Our resistor is also PN junction!
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integrated circuit resistors
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videos

« GLOBALFOUNDRIES Sand to Silicon

» Semiconductor Technology at TSMC,
2011

» Intel: The Making of a Chip with
22nm/3D Transistors
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Diffusion from a gas, liquid or solid source

T ﬂ"\_\'-._'_t__—d-""_-"

—
Si G: ; Si0 2 = — LW 00O

s -

; L3 oped Sirecion
Doped Si region 15] Doped Siregion |

Pre-deposition (dose control) Drive-in (profile control)

» Silicon dioxide masks impurity diffusion in Si

* The mixture of dopant species, oxygen and inert gases
pass over wafers at 900-1100°C in a diffusion furnace

* The dopant concentration reaches the solid solubility limit

* The impurities can be introduced into the carrier gas from

solid (evaporated), liquid (vapor) or gas source.
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Dopant solid solubility limits

Solid solubility limit: maximum concentration for an
impurity before precipitation into a separate phase.
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Diffusion from a macroscopic viewpoint

Fick’s first law of diffusion

F is net flux.
F=-D dC/dx

0C(x,1)
Ox

F(x,t): -D

Concentration

Cf. Ohm’s law

Distance

C is impurity concentration (#/cm3), D is diffusivity (cm?/s).

D is related to atomic hops over an energy barrier (formation and
migration of mobile species) and is exponentially activated.

Negative sign indicates that the flow is down the concentration gradient.
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Intrinsic diffusivity D,

Intrinsic: impurity concentration N4, Np < n;
Note that n, is quite high at typical diffusion temperatures

T (°C)
1200 1100 1000 9200 800
D; = D’ exp(—&) Lo
kT
E.: activation energy § ot
DOcm2s)  E_(eV) ;10_,
B 10 346 £
n 12 350 &
P 470 368 ="
As 9.17 3.99 GE L

Sb 4.58 3.88 10 l].lfnS 0.7 0.75 0.8 0.85 0:9
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Fick's second law

Since:
; A Fout
oC(x,f)  OF(x,1) =, . — e
ot ox
F(X,t) —_D GC(x,t)
ax Ax
We have

If D is constant:

C(ed)  oF(r) 6[D6C(x,t)} 0C(x,t) _ ,0°Clx,1)

ot Ox”
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Solution to diffusion equation

0C(x,t) _ D 0°C(x,1)
ot Ox*
In equilibrium, C doesn’t change with time.
oC 0°C
~—=D——=0 C=a+bx
Ot Ox o
C, X
Diffusion of oxidant (O, or NS
H,O) through SiO, during C’
thermal oxidation.
CI:O
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for more on IC manufacturing

ECE 612 Purdue University:

https://nanohub.org/resources/5788

https://nanohub.org/resources/5855

ECE 557 Purdue University:

http://www.purdue.edu/newsroom/releases/2015/Q3/purdue-uses-nanotechnology-
cleanroom-to-expand-undergrad-class,-expose-students-to-high-end-research.html

http://web.ics.purdue.edu/~ebaytok/projects/PMOS%20Report.pdf
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equilibrium e-band diagram

;
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e-band diagram under forward bias
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The applied voltage drops across the junction, but...



QFL’s split
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e-band diagram under reverse bias
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Forward bias reduces fields;
Reverse bias increases them

N,>>N,

Xp >> X,

2/20/2018 Bermel ECE 305 S18

27



key points (one-sided NP junctions)
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carrier concentrations in long regions

An(x)

2/20/2018

What is An(x) on the p-side? Ans. Solve the MCDE.
2

An(O) = n—i(quA/kBT — 1)
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currents in long regions

dAn
-D ——
An(x) ax 1, :
> How many electrons recombine
per second?
Answer:
A D
R, :A(—DHM i An(0)
An(x) = An(O)e_X/L" dx |, L,
—
0
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currents in long regions
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diode current in long regions

./
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J = A( p \ o1V /ksT 1
: ~i| 7w, )l
(V)= 1,(7,)+ 1,(V,) A
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carrier concentrations in short regions

What is An(x) on the p-side”? Ans. Solve the MCDE.

dzl’l ‘

D, 2 =0

An(xf)=C+ Dy VT

x=W,, An(x=W )=0=C=-DW

p
2

x=0', An(x=0) =n—i(quA'B —1) =C
2 NA

An(x,t):]’:f_i(eqw _1)[1_WiJ

A p
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currents

In short regions

2
An(x) = = (e -1) ——— J, =qgnu,E+qD,Vn
y W,
2
Jn :an@ :_an ni (e(]VA,H 1)
dx| _o W, N, |
d gD n’ AT """" Fn
J =—qD ap __Tr n (quAﬂ _1) ------------- Fy tmommmme R
p P dx =0 I/Vn ND ’7
_D I’l2 D n2 | /]\
JT — _q n I 4+ V4 (quAﬂ _1) Ap
W, N, W, N, ) ‘
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ideal diode equation summary

N\

T >V,
long short
(D D D 2 D i
]():qA( nz O:qA( nnl 1 pni)
L, N, L w,N, W,N,
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example

p-Si
| s x
Wy, 0 7, =10 us w,
N,=10°cm® W, =0.1um I,=1,(e"""" -1)
r,=1us [,=?
N,=10"cm® W, =10 um Is this a one-sided diode?
2/20/2018
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example: one-sided diodes

p-Si
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conclusions

» Semiconductor fabrication is a mature,
highly reproducible technology that
underpins electronic devices we use today

» Each fabrication step is arranged in a
ogical sequence to create specific devices
ike interconnects and PN junctions

= PN junctions under bias act as ideal
diodes; their properties (such as dark
current) can be predicted from underlying
materials, doping, and geometries
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