# **ECE-305: Spring 2018 Semiconductor Fabrication**

Pierret, Semiconductor Device Fundamentals (SDF) Chapter 4 (pp. 139-194)

Professor Peter Bermel
Electrical and Computer Engineering
Purdue University, West Lafayette, IN USA

pbermel@purdue.edu



## current challenges in device fabrication

#### Smaller, Faster, Cheaper, Over: The Future of Computer Chips

By JOHN MARKOFF SEPT. 26, 2015



Max Shulaker, a graduate student at Stanford, working in 2011 on a new kind of semiconductor circuit. As chips continue to shrink, computer scientists are seeking new technological breakthroughs.

http://www.nytimes.com/2015/09/27/technology/smaller-faster-cheaper-over-the-future-of-computer-chips.html?ref=technology&\_r=0



- 1) Oxidize
- 2) Coat with resist



2/20/2018

- 1) Oxidize
- 2) Coat with resist



- 1) Oxidize
- 2) Coat with resist
- 3) Expose
- 4) Develop



2/20/2018

1) Oxidize

5) Etch

- 2) Coat with resist
- 3) Expose
- 4) Develop



1) Oxidize

5) Etch

2) Coat with resist

6) Strip resist

- 3) Expose
- 4) Develop





1) Oxidize

- 5) Etch
- 2) Coat with resist
- 6) Strip resist

3) Expose

7) Dope

4) Develop

8) Anneal and Oxidize



1) Oxidize

5) Etch

9) Open contacts

- 2) Coat with resist
- 6) Strip resist

3) Expose

7) Dope

4) Develop

8) Anneal/Oxidize



1) Oxidize

5) Etch

9) Open contacts

- 2) Coat with resist
- 6) Strip resist
- 10) Deposit metal pattern, etch

3) Expose

7) Dope

4) Develop

8) Anneal/Oxidize





# videos

- GLOBALFOUNDRIES Sand to Silicon
- Semiconductor Technology at TSMC,
   2011
- Intel: The Making of a Chip with
   22nm/3D Transistors

## Diffusion from a gas, liquid or solid source





Pre-deposition (dose control)

Drive-in (profile control)

- Silicon dioxide masks impurity diffusion in Si
- The mixture of dopant species, oxygen and inert gases pass over wafers at 900-1100°C in a diffusion furnace
- The dopant concentration reaches the solid solubility limit
- The impurities can be introduced into the carrier gas from solid (evaporated), liquid (vapor) or gas source.

2/20/2018

#### Dopant solid solubility limits

Solid solubility limit: maximum concentration for an impurity before precipitation into a separate phase.



Adapted from Bo Cui, ECE, University of Waterloo; and Silicon VLSI Technology by Plummer, Deal and Griffin

16

## Diffusion from a macroscopic viewpoint

Fick's first law of diffusion F is net flux.

$$F(x,t) = -D \frac{\partial C(x,t)}{\partial x}$$

Cf. Ohm's law



C is impurity concentration (#/cm³), D is diffusivity (cm²/s).

D is related to atomic hops over an energy barrier (formation and migration of mobile species) and is exponentially activated.

Negative sign indicates that the flow is down the concentration gradient.

2/20/2018

Bermel ECE 305 S18

17

## Intrinsic diffusivity D<sub>i</sub>

#### Intrinsic: impurity concentration $N_A$ , $N_D < n_i$

Note that n<sub>i</sub> is quite high at typical diffusion temperatures

$$D_i = D^0 \exp(-\frac{E_a}{kT})$$

$$E_a: \text{ activation energy}$$

$$D^0(\text{cm}^2/\text{s}) \quad E_a(\text{eV})$$

$$E_a: 10^{-11}$$

$$D^0(\text{cm}^2/\text{s}) \quad E_a(\text{eV})$$

$$E_a(\text{eV})$$

$$E_a: 10^{-13}$$

$$E_a: 10^{-15}$$

$$E_a:$$

Adapted from Bo Cui, ECE, University of Waterloo; and Silicon VLSI Technology by Plummer, Deal and Griffin

#### Fick's second law

#### Since:

$$\frac{\partial C(x,t)}{\partial t} = -\frac{\partial F(x,t)}{\partial x}$$
$$F(x,t) = -D\frac{\partial C(x,t)}{\partial x}$$



#### We have:

$$\frac{\partial C(x,t)}{\partial t} = -\frac{\partial F(x,t)}{\partial x} = \frac{\partial}{\partial x} \left[ D \frac{\partial C(x,t)}{\partial x} \right]$$

#### If D is constant:

$$\frac{\partial C(x,t)}{\partial t} = D \frac{\partial^2 C(x,t)}{\partial x^2}$$

### Solution to diffusion equation

$$\frac{\partial C(x,t)}{\partial t} = D \frac{\partial^2 C(x,t)}{\partial x^2}$$

In equilibrium, C doesn't change with time.

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} = 0$$

$$C = a + bx$$

Diffusion of oxidant (O<sub>2</sub> or H<sub>2</sub>O) through SiO<sub>2</sub> during thermal oxidation.



2/20/2018

Bermel ECE 305 S18

 $SiO_2$ 

Si

20

## for more on IC manufacturing

#### ECE 612 Purdue University:

https://nanohub.org/resources/5788

https://nanohub.org/resources/5855

#### ECE 557 Purdue University:

http://www.purdue.edu/newsroom/releases/2015/Q3/purdue-uses-nanotechnology-cleanroom-to-expand-undergrad-class,-expose-students-to-high-end-research.html

http://web.ics.purdue.edu/~ebaytok/projects/PMOS%20Report.pdf

# equilibrium e-band diagram



## e-band diagram under forward bias



The applied voltage drops across the junction, but...

# QFL's split



## e-band diagram under reverse bias



## Forward bias reduces fields; Reverse bias increases them



## key points (one-sided NP junctions)

$$V_{bi} \approx \frac{k_B T}{q} \ln \left( \frac{N_D N_A}{n_i^2} \right)$$

$$W = \left[\frac{2K_{S}\varepsilon_{0}}{qN_{A}}(V_{bi} - V_{A})\right]^{1/2} \quad W \propto \sqrt{V_{bi} - V_{A}} \quad W \propto \frac{1}{\sqrt{N_{A}}}$$

$$\mathcal{E}(0) = \frac{2(V_{bi} - V_A)}{W} \quad \mathcal{E}(0) \propto \sqrt{V_{bi} - V_A} \quad \mathcal{E}(0) \propto \sqrt{N_A}$$

## carrier concentrations in long regions

What is  $\Delta n(x)$  on the p-side? Ans. **Solve the MCDE**.



## currents in long regions



## currents in long regions



## diode current in long regions

$$I_n = \frac{qA\Delta n(0)D_n}{L_n} = qA\left(\frac{D_n}{L_n}\frac{n_i^2}{N_A}\right)\left(e^{qV_A/k_BT} - 1\right)$$



$$I_{p} = \frac{qA\Delta p(0)D_{p}}{L_{p}} = qA\left(\frac{D_{p}}{L_{p}}\frac{n_{i}^{2}}{N_{D}}\right)\left(e^{qV_{A}/k_{B}T} - 1\right)$$

$$I_D(V_A) = I_p(V_A) + I_n(V_A) A$$

# carrier concentrations in short regions

What is  $\Delta n(x)$  on the p-side? Ans. Solve the MCDE.

$$D_{N} \frac{d^{2}n}{dx^{2}} = 0$$

$$\Delta n(x,t) = C + Dx$$

$$x = W_{p}, \quad \Delta n(x = W_{p}) = 0 \Rightarrow C = -DW_{p}$$

$$x = 0', \quad \Delta n(x = 0) = \frac{n_{i}^{2}}{N_{A}} \left(e^{qV_{A}\beta} - 1\right) = C$$

$$\Delta n(x,t) = \frac{n_{i}^{2}}{N_{A}} \left(e^{qV_{A}\beta} - 1\right) \left(1 - \frac{x}{W_{p}}\right)$$

2/20/2018

Bermel ECE 305 S18

# currents in short regions

$$\Delta n(x) = \frac{n_i^2}{N_A} \left( e^{qV_A\beta} - 1 \right) \left( 1 - \frac{x}{W_p} \right)$$

$$\mathbf{J}_N = q n \mu_N \mathbf{\mathcal{E}} + q D_N \nabla n$$

$$J_{n} = qD_{n} \frac{dn}{dx} \bigg|_{x=0} = -\frac{qD_{n}}{W_{p}} \frac{n_{i}^{2}}{N_{A}} \left(e^{qV_{A}\beta} - 1\right)$$



$$J_{p} = -qD_{p} \frac{dp}{dx} \bigg|_{x=0'} = -\frac{qD_{p}}{W_{n}} \frac{n_{i}^{2}}{N_{D}} \left(e^{qV_{A}\beta} - 1\right)^{-1} \frac{1}{1 - 1 - 1} F_{p}$$

$$J_T = -q \left[ \frac{D_n}{W_n} \frac{n_i^2}{N_A} + \frac{D_p}{W_n} \frac{n_i^2}{N_D} \right] \left( e^{qV_A\beta} - 1 \right)$$

## ideal diode equation summary



2/20/2018

Bermel ECE 305 S18

## example



## example: one-sided diodes



2/20/2018

Bermel ECE 305 S18

# conclusions

- Semiconductor fabrication is a mature, highly reproducible technology that underpins electronic devices we use today
- Each fabrication step is arranged in a logical sequence to create specific devices like interconnects and PN junctions
- PN junctions under bias act as ideal diodes; their properties (such as dark current) can be predicted from underlying materials, doping, and geometries