ECE-305: Spring 2018 Non-Ideal Diodes+Solar Cells

Pierret, Semiconductor Device Fundamentals (SDF) Chapter 6

Professor Peter Bermel Electrical and Computer Engineering Purdue University, West Lafayette, IN USA pbermel@purdue.edu

2/27/2018

outline

- 1) Recap of Ideal Diodes
- 2) Diode Non-idealities:
 - Breakdown
 - High forward bias
 - Recombination-generation current
- 3) Small-signal model

ideal diode + solar cell summary

Ideal diode equation: $I_D = I_0 (e^{qV_A/nk_BT} - 1)$

Light is absorbed and produces e-h pairs
 PN junctions separate e-h pairs and collect the carriers.

3) Current flow in external circuit produces a FB voltage and the FB diode current reduces the total current.

4) Power out
$$|P_{out}| = I_{mp}V_{mp} = I_{SC}V_{OC}FF$$

5) Unlike integrated circuit chips, where the value added comes from the design/system, manufacturing costs are critical in PV.

outline

1) Recap of Ideal Diodes

- 2) Diode Non-idealities:
 - Breakdown
 - High forward bias
 - Recombination-generation current
- 3) Small-signal model

reverse bias breakdown

5

critical electric field

forward bias

ideal diode current in forward bias

2/27/2018

real diodes in forward bias

Fig. 6.10(a), Semiconductor Device Fundamentals, R.F. Pierret

2/27/2018

high forward bias

1) series resistance

moderate forward bias diode current

Minority carrier recombination in quasi-neutral regions leads to diode current.

recombination in SCR: forward bias

$$J(V_A) = qR_{TOT}(V_A)$$

Maximum recombination occurs when $n(x) \approx p(x)$

$$n(x)p(x) = n_i^2 e^{qV_A/k_BT}$$
$$\hat{n} \approx \hat{p} \propto n_i e^{qV_A/2k_BT}$$

$$qR(V_A) = \frac{qn_i e^{qV_A/2k_BT}}{\tau_{eff}}$$

Recombination in space-charge regions gives rise to n = 2 currents that go as n_i not n_i^2 .

2/27/2018

recombination-generation in SCR: reverse bias

Fig. 6.15, Semiconductor Device Fundamentals, R.F. Pierret

2/27/2018

Bermel ECE 305 S18

Various Regions of I-V Characteristics

- 1. Diffusion limited
- 2. Ambipolar transport
- 3. High injection
- 4. R-G in depletion
- 5. Breakdown
- 6. Trap-assisted R-G
- 7. Esaki Tunneling

2/27/2018

non-ideal diode summary

Non-ideal diode equation: $I_D = I_0 \left(e^{q(V-I_D R_S)/nk_B T} - 1 \right)$

- FB: recombination in quasi-neutral regions give n = 1 current (diffusion current).
- 2) FB: recombination R>0 in SCR gives n = 2 current
- 3) RB: constant when dominated by diffusion current
- 4) RB: increases as W from generation (R<0) in SCR
- 5) RB: avalanche or Zener tunneling

outline

1) Recap of Ideal Diodes

2) Diode Non-idealities:

- Breakdown
- High forward bias
- Recombination-generation current
- 3) Small-signal model

small signal ac

DC solution

Superposition: 1) DC

small signal ac

Superposition: 2) ac

equivalent circuit

Ideal diode equation (DC)

small signal ac (capacitance)

diode capacitance in RB

Fig. 7.3, Semiconductor Device Fundamentals, R.F. Pierret

capacitance

$$C = \frac{K_r \varepsilon_0}{d} A$$

reverse bias capacitance

reverse bias capacitance

$$C_J(V_A) = \frac{K_S \varepsilon_0}{W(V_A)} A$$

$$W(V_{A}) == \left[\frac{2K_{S}\varepsilon_{0}}{qN_{A}}(V_{bi} - V_{A})\right]^{1/2} = \left[\frac{2K_{S}\varepsilon_{0}}{qN_{A}}(V_{bi} + V_{R})\right]^{1/2}$$
$$C_{J}(V_{R}) = \left[\sum_{k=1}^{\infty} \sqrt{\frac{N_{A}}{(V_{bi} + V_{R})}}\right]^{1/2}$$

$$1/C^2$$
 vs. V_R

$$C_{J}(V_{R}) = \frac{K_{S}\varepsilon_{0}A}{\left[\frac{2K_{S}\varepsilon_{0}}{qN_{A}}(V_{bi}+V_{R})\right]^{1/2}}$$

$$\frac{1}{C_J^2(V_R)} = \frac{2}{qN_A K_S \varepsilon_0 A^2} (V_{bi} + V_R)$$

Fig. E7.2, Semiconductor Device Fundamentals, R.F. Pierret

equivalent circuit (reverse bias)

Bermel ECE 305 S18

equivalent circuit (forward bias)

stored minority carrier charge

stored minority carrier charge

$$Q_{n} = qA\Delta n(0)L_{n} \qquad \Delta n(0) = \frac{n_{i}^{2}}{N_{A}} \left(e^{qV_{A}/k_{B}T} - 1\right)$$

$$C_{D} = \frac{dQ_{n}}{dV_{A}} = A \frac{q}{k_{B}T/q} \frac{n_{i}^{2}}{N_{A}} L_{n}e^{qV_{A}/k_{B}T}$$

$$G_{d} = \frac{I_{0}e^{qV_{A}/k_{B}T}}{k_{B}T/q} = \frac{qA}{k_{B}T/q} \frac{D_{n}}{L_{n}} \frac{n_{i}^{2}}{N_{A}} e^{qV_{A}/k_{B}T}$$

Check units:

2/27/2018

equivalent circuit (general)

- 1) Compute the DC bias current
- 2) Replace the diode with the s.s. a.c. model and do the a.c. analysis.

Summary of Small Signal Model

- In small signal approximation, can treat AC response of pn junction as small perturbation to DC ideal diode equation
- In reverse bias, we find a variable complex impedance (varactor): a junction capacitance and conductance in parallel, i.e., $Y_{eq} = G_c + j\omega C_J$
- In forward bias, we also have a diffusion capacitance, so: $Y_{eq} = G_c + j\omega(C_J + C_D)$