ECE-305: Spring 2018 Bipolar Junction Transistors

Pierret, *Semiconductor Device Fundamentals* (SDF) Chapters 10 and 11 (pp. 371-385, 389-403)

Professor Peter Bermel Electrical and Computer Engineering Purdue University, West Lafayette, IN USA <u>pbermel@purdue.edu</u>

Outline

- 1) Introduction to Bipolar Junction Transistors
- 2) Definitions and conventions
- 3) Band diagram with and without biases
- 4) Forward active band-diagram
- 5) Currents in bipolar junction transistors
- 6) Conclusions

Background

Point contact Germanium transistor (Bell Labs)

Shockley's Bipolar Transistors

Double Diffused BJT

Modern Bipolar Junction Transistors (BJTs)

Symbols and Conventions

4/17/2018

Polarities

Configurations: Common Emitter/Common Base

Current Gain

Common Emitter current gain ..

$$\beta_{DC} = \frac{I_C}{I_B}$$

Common Base current gain ..

4/17/2018

Bermel ECE 305 S18

 $\vec{I_C}$ C

Ε

B

Ε

 V_{EB} (in)

Current Gain

Topic Map

	Equilibrium	DC	Small signal	Large Signal	Circuits
Diode					
Schottky					
BJT/HBT					
MOS					

Band Diagram at Equilibrium

Electrostatics in Equilibrium

Electrostatics in Equilibrium

Topic Map

	Equilibrium	DC	Small signal	Large Signal	Circuits
Diode					
Schottky					
BJT/HBT					
MOS					

Current flow with Bias

Coordinates and Convention

$$N_{E} = N_{D,E} \quad N_{B} = N_{A,B} \quad N_{C} = N_{D,C}$$
$$D_{E} = D_{P} \quad D_{B} = D_{N} \quad D_{C} = D_{P}$$
$$n_{E0} = n_{p0} \quad p_{B0} = p_{n0} \quad n_{C0} = n_{n0}$$

4/17/2018

Carrier Distribution in Base

Carrier Distribution in Base

Collector Electron Current

Emitter Current

essence of current gain

Outline

- 1) Equilibrium and forward band-diagram
- 2) Currents in bipolar junction transistors
- 3) Ebers Moll model
- 4) Conclusions

emitter current crowding

emitter current crowding

emitter current crowding

emitter and collector areas

Bermel ECE 305 S18

forward active region

emitter current: forward active region

collector current: forward active region

base current: forward active region

summary: forward active region

4/17/2018

Ebers-Moll model

Question:

How do we describe the BJT in **any** region of operation?

emitter-base junction (the forward diode)

Base-collector junction (the reverse diode)

Both junctions....

Ebers-Moll model

Bermel ECE 305 S18

4/17/2018

Ebers-Moll model

$$I_{C}(V_{BE}, V_{BC}) = \alpha_{F} I_{F0} \left(e^{qV_{BE}/k_{B}T} - 1 \right) - I_{R0} \left(e^{qV_{BC}/k_{B}T} - 1 \right)$$
$$I_{E}(V_{BE}, V_{BC}) = I_{F0} \left(e^{qV_{BE}/k_{B}T} - 1 \right) - \alpha_{R} I_{R0} \left(e^{qV_{BC}/k_{B}T} - 1 \right)$$
$$I_{B}(V_{BE}, V_{BC}) = I_{E} \left(V_{BE}, V_{BC} \right) - I_{C} \left(V_{BE}, V_{BC} \right)$$
$$\alpha_{F} I_{F0} = \alpha_{R} I_{R0}$$

See Pierret SDF, Chapter 11, sec. 11.1.4

Conclusion

- Bipolar junction transistor (BJT) physics is most easily understood as an extension of junction diode behavior
- The equations can be encapsulated in a simple equivalent circuit, appropriate for dc applications
- It is important to remember the definitions and conventions, so that we can recall them in various situations.
- Being able to draw the band-diagram for arbitrary bias conditions in a key skill, which will be on the final exam
- For a terrific and interesting history of invention of bipolar transistor, read the book, <u>Crystal Fire</u>