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Approximations for Inversion Charge
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Approximations: 

Square law approximation …

Simplified bulk charge approximation …
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Linear Region (Low VDS)
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Calculating VDSAT
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Take log on both sides and then set the derivative to zero ….
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Velocity Saturation
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‘Signature’ of Velocity Saturation
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ID and (VGS - VT):  In practice 

…..
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Topic: MOS-Capacitors
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Objective: Being comfortable in calculating the internal quantities of a MOS-

capacitor, including depletion width, surface electric field, oxide field, threshold 

voltage, etc. 

Consider a silicon MOS-CAP with 𝑁𝐴 = 1016 𝑐𝑚−3. Calculate the maximum 

depletion width. Also, calculate the threshold voltage given the oxide thickness is 

2 nm.  

𝜙𝐵 = 𝑘𝐵 𝑇/𝑞 ln(𝑁𝐴/𝑛𝑖) = 0.3473 V,      and 𝜓𝑠 = 2𝜙𝐵 = 0.6946𝑉

𝑥𝐷 =
2 𝜅𝑠 𝜖0 (𝜓𝑠)

𝑞𝑁𝐴

0.5

= 0.3 × 10−4𝑐𝑚

𝑉𝑡 = 𝜙𝑠 –
𝑄𝐵
𝐶𝑜

= 0.6946 +
1.6 × 10−19 × 1016 × 0.3 × 10−4

3.9 × 8.85410−14/(2 × 10−7)
= 0.7225𝑉

Explain to your satisfaction why: Capacitor area is absent, the dielectric constant 

is that of oxide, mobile charges are absent, and 𝐸𝑜𝑥 = −
𝑄𝐵

𝑥0
𝐶0



Topic: Nonideal MOS-Capacitors
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Objective: Given various nonideal quantities, such as workfunction

difference, trapped charges, interface defects, calculate MOS-C 

electrical performance. 

For an Al-Silicon MOS-C, with Φ𝑀=4.10 eV and 𝜒𝑆𝑖 =4.05eV. If the 

doping is 𝑁𝐴 = 1015 𝑐𝑚−3,  then calculate the flat band voltage. 

𝜙𝐵 = 𝑘𝐵 𝑇/𝑞 ln(𝑁𝐴/𝑛𝑖) = 0.29 V,      

𝜙𝑚𝑠 = 𝜒𝑆𝑖 +
𝐸𝐺
2
+ 𝜙𝐵 −Φ𝑀 = 0.89𝑉

Explain to your satisfaction why: 

(a) In the 𝜙𝑚𝑠 expression, if I wished to use 𝐸𝐺 (not 𝐸𝐺/2), how should I 

have modified the expression to get the same result. 

(b) Flatband voltage is negative, but the 𝜙𝑚𝑠 is positive?

(c) Flatband voltage looks similar to the built-in voltage.

Therefore, one must apply -0.89V to make the band flat.



Topic: Nonideal MOS-Capacitors
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Objective: Learning to interpret an experimental C-V characteristics

Based on the C-V characteristics, answer the following questions

1. Is this a MOSCAP or MOSFET ? 

Ans. MOSCAP. Only a MOS-CAP shows such 

High-frequency inversion capacitance behavior. 

2. What is the threshold voltage?   Ans. -1V. 

3. What is the flatband voltage?  Ans. -2V

4. Is this a p-doped or n-doped semiconductor? 

Ans. Accumulation occurs at negative voltage. Here, negative charge in the gate 

brings further increases the positive charge; hence, the substrate is p-type.
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Topic: Nonideal MOS-Capacitors
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Objective: Learning to interpret an experimental C-V characteristics

Based on the C-V characteristics, answer the following questions

5. If the material becomes a channel of a MOSFET, will this be 

NFET or PFET? 

Ans. An N-MOSFET.  MOSFET type is defined by the minority 

carriers (inversion)

6. Which voltage range would you use to determine the 

doping?  Ans. -2V to -1V. 

7. Which region will you check to determine the oxide 

thickness?  Ans. Less than -2V.

8. Is this a small signal or a deep-depletion characteristics? 

Ans. Small signal because capacitance at V > V_T is a 

constant. Deep depletion would show linear reduction in 

capacitance with voltage.   
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Topic: MOSFET

14

Objective: Calculate electrical parameters based on experimental data

Explain: Is this a long channel or a short channel transistor?
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Warranty, product recall and other facts of life
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In this course, 

you  are learning 

to 

analyze/design 

MOSFETs that 

go in an IC …

… because the ICs  

operate in incredibly 

harsh conditions, 

turning on and off 

trillions of time

during its lifetime ….

…  therefore the properties of the 

MOSFET keep changing. 

Eventually, S/D  can be shorted, 

the gate oxide can break, etc ….

4/5/2018



Measure of Flat-band shift from C-V Characteristics
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Idealized MOS Capacitor
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Distributed Trapped charge in the Oxide
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An Intuitive View 
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Gate Voltage and Oxide Charge
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Gate Voltage and Oxide Charge
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Interpretation for Bulk Charge 
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Interpretation for Interface Charge
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Time-dependent shift of Trapped Charge
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Dielectric Breakdown
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Radiation Induced Charge Buildup
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Bias Temperature Instability (Experiment)
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Negative Bias Temperature Instability
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SiO and SiH Bonds
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Interface States

31
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‘Annealing’ of Interface States
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C-V Stretch Out
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Nature of Donor and Acceptor Traps
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Donor-like Interface States
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Acceptor-like Interface States
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Acceptor and Donor Traps Combined
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Short Channel Effect: Vth Roll-off
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How to reduce Vth roll-off …
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Advantages of High-k Dielectric 

…
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Solution: Ultra-thin Body SOI
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Example: FINFET, OmegaFET, X-FET
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Conclusion
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1) Ideal and non-ideal MOSFETs currents above threshold can be predicted 

using a simplified bulk-charge theory

2) There are a variety of failure modes that can degrade performance over 

time: particularly dielectric breakdown and negative-bias temperature 

instability

3) Short channel effects are a serious concern for MOSFET scaling, and 

novel approaches have been proposed to solve them. Fortunately, 

electrons travel from source to drain without scattering in very short 

channel transistors. A considerably simpler theory applies here.
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